
Pro (Web 2.0) Mashup Development:  Remixing data and services (forthcoming book from Apress).   
(http://blog.mashupguide.net) 

1

CHAPTER 17 

Desktop and Web-Based 
Office Suites  
I've long been excited about the mashability and reusability of office suite documents (word 
processor documents, spreadsheets, and PowerPoint presentations), the potential of which has 
gone largely unexploited.  There are many office suites, but in this chapter I concentrate on 
the latest versions of Microsoft Office (2007 and 2003) and OpenOffice.org (version 2.x).  
Few people realize that both these applications not only have programming interfaces but 
also XML-based file formats.  In theory, office documents using the respective file formats 
(OpenDocument and Office Open XML) are easier to reuse and generate from scratch than 
older generations of documents using opaque binary formats.  And as we seen throughout the 
book, knowledge of data formats and an API means having opportunities for mashups.  For 
ages, people have been reverse engineering older Microsoft Office documents, whose 
formats were not publicly documented – but recombining office suites should be easier now.   
In this chapter, I will also introduce you to emerging space of web-based office suites, 
specifically ones that are programmable.  We'll also look briefly at how to program the office 
suites. . 

 
This chapter:   

 * Shows how to do some simple parsing of ODF and Office Open XML documents 

 * Shows how to create a simple document in both ODF and OpenXML 

 * Demonstrates some simple scripting of Microsoft Office and OO.o 

 * Lays out what else is possible by manipulating the open document formats 

Mashup Scenarios for Office Suites 
Why would mashups of office suite documents be interesting?  For one, they contain much of 
knowledge and communication embeedd in digital form.  Sometimes they are in narratives 
(such as world documents), sometimes in semi-structured forms (such as spreadsheets).   To 
repurpose that knowledge, it is sometimes a matter of reformatting that document into 
another format.  Other times, it's about extracting valuable pieces (for instance, all the 
references I have in my book might be extracted into a reference database.) 

Some use case scenarios for the programmatic creation and reuse of office documents I 
have had in mind are: 

DRAFT Version:  2007-06-07 15:24:53  Copyright Raymond Yee. 



Pro (Web 2.0) Mashup Development:  Remixing data and services (forthcoming book from Apress).   
(http://blog.mashupguide.net) 

2

 * reusing Powerpoint. How many of you out there have collections of Powerpoint 
presentations which draw from a common collection of digital assets (pictures, 
outlines) and complete slides? Can we build a system of personal information 
management so that PPT are constructed as virtual assemblages of slides, dynamically 
associated with assets?  

 * repurposing my book (write once, publish everywhere.)  I'm currently writing this 
manuscript in Microsoft Office 2007.  I'd like to republish this book in (X)HTML, 
Docbook, PDF, wiki markup.   How would I repurpose the Word manuscript into those 
formats? 

 * creating an educational website in which data is downloaded to spreadsheets – not only 
as static data elements by as dynamic simulations.  There's plenty of data out there – 
can we write programs to translate them into the dominant data analysis tool used by 
everyone: spreadsheets, whether they are on the desktop or in the cloud? 

 * instant Powerpoint from Flickr.  I'd like to download a Flickr set as a Powerpoint 
presentation. (This scenario seems to fit a world in which Powerpoint is a dominant 
presentation program.  Even if Tuffte hates it, a Flickr to PPT translator might make it 
easier to show those vacation pictures at your next company presentation.) 

World of Document Markup 
This chapter focuses on XML-based document markup languages in two dominant group 
of office suites: Microsoft Office 2007 and OpenOffice.org.  There are plenty of other 
markup language, which covered well in the Wikipedia: 
 * http://en.wikipedia.org/wiki/Document_markup_language 

 * http://en.wikipedia.org/wiki/List_of_document_markup_languages 

 * http://en.wikipedia.org/wiki/Comparison_of_document_markup_languages 

OpenDocument Format (ODF) 
OpenDocument is "an OASIS Standard and a published ISO and IEC International Standard 
referred to as ISO/IEC 26300:2006."1  ODF is used most prominently in OpenOffice.org 
(http://en.wikipedia.org/wiki/OpenOffice.org) and KOffice (http://www.koffice.org/), among 
other office suites. For a good overview of the file format, consult J. David Eisenberg' 
excellent book on ODF:  OASIS OpenDocument Essentials, which is available for download 
as a PDF (free of charge) or for purchase.2 

The goal of this section is to get you jumpstarted into the issues of parsing and creating 
ODF files programmatically.   

                                                 
1   http://en.wikipedia.org/wiki/Opendocument 
2   http://books.evc-cit.info/OD_Essentials.pdf)  Page was down – use:  
http://web.archive.org/web/20060521030544/http://books.evc-cit.info/index.html  OASIS hosts the book at 
http://develop.opendocumentfellowship.org/book/ 

DRAFT Version:  2007-06-07 15:24:53  Copyright Raymond Yee. 



Pro (Web 2.0) Mashup Development:  Remixing data and services (forthcoming book from Apress).   
(http://blog.mashupguide.net) 

3

For this section, I am assuming you have OpenOffice.org v 2.2 installed.  

A good way to understand the essentials of the file format is to create a simple instance of 
an ODF file and then analyze it: 

 1. Fire up OpenOffice.org Writer, type in "Hello World", and save the file as 
helloworld.odt.3 

 2. Open the file in an zip utility (such as WinZip on the PC).  One easy way to do so is to 
change the file extension from odt to zip so that the operating system will recognize it 
as a zip file.  You will see that it's actually a zip-format file when you go to unzip it.  
(See the list of files in Figure 17-??) 

Insert 858Xf1701.tif 

Figure 17-1  Unzipping helloworld.zip  See that an OpenDocument Writer file produced by 
OpenOffice.org is actually in the zip format.  

You'll see some of the files that can be part of an ODF file:   
 * content.xml 

 * styles.xml 

 * meta.xml 

 * settings.xml 

 * META-INF/manifest.xml  

 * mimetype 

 * Configuration2/accelerator/ 

 * Thumbnails/thumbnail.png 

You can also use your favorite programming language to generate a list of the files, such 
as Python or PHP. The following Python code 

 
import zipfile 
z = zipfile.ZipFile(r'[path_to_your_file_here]') 
z.printdir() 

generates 
File Name                                             Modified             Size 
mimetype                                       2007-06-02 16:10:18           39 
Configurations2/statusbar/                     2007-06-02 16:10:18            0 
Configurations2/accelerator/current.xml        2007-06-02 16:10:18            0 
Configurations2/floater/                       2007-06-02 16:10:18            0 
Configurations2/popupmenu/                     2007-06-02 16:10:18            0 

                                                 
3   Available at http://examples.mashupguide.net/ch17/helloworld.odt 

DRAFT Version:  2007-06-07 15:24:53  Copyright Raymond Yee. 



Pro (Web 2.0) Mashup Development:  Remixing data and services (forthcoming book from Apress).   
(http://blog.mashupguide.net) 

4

Configurations2/progressbar/                   2007-06-02 16:10:18            0 
Configurations2/menubar/                       2007-06-02 16:10:18            0 
Configurations2/toolbar/                       2007-06-02 16:10:18            0 
Configurations2/images/Bitmaps/                2007-06-02 16:10:18            0 
content.xml                                    2007-06-02 16:10:18         2776 
styles.xml                                     2007-06-02 16:10:18         8492 
meta.xml                                       2007-06-02 16:10:18         1143 
Thumbnails/thumbnail.png                       2007-06-02 16:10:18          945 
settings.xml                                   2007-06-02 16:10:18         7476 
META-INF/manifest.xml                          2007-06-02 16:10:18         1866 

The equivalent functionality in PHP can be had with the php zip library (see  
http://us2.php.net/zip ): 
<?php 
# see http://us2.php.net/manual/en/language.types.string.php for the use of ' -- the 
\ doesn't need to be escaped 
$zip = zip_open('[path_to_your_file]'); 
while ($entry = zip_read($zip)) { 
  print zip_entry_name($entry) . "\t". zip_entry_filesize($entry). "\n"; 
} 
zip_close($zip); 
?> 

from which you get: 
 
mimetype        39 
Configurations2/statusbar/      0 
Configurations2/accelerator/current.xml 0 
Configurations2/floater/        0 
Configurations2/popupmenu/      0 
Configurations2/progressbar/    0 
Configurations2/menubar/        0 
Configurations2/toolbar/        0 
Configurations2/images/Bitmaps/ 0 
content.xml     2776 
styles.xml      8492 
meta.xml        1143 
Thumbnails/thumbnail.png        945 
settings.xml    7476 
META-INF/manifest.xml   1866 

Generating a simple ODF file using OpenOffice.org gives you a simple file from which 
you can build. However, it's useful to boil the file down even further. A question to ask here 
is what a minimal example of an ODF file.  But how to figure out what the minimal ODF 
document is?  (I would add that if we have a hard time determining what a minimal valid 
instance of document format is, it's going to be difficult for a group of vendors and 
developers to achieve operability in the documents they generate.) 

Here are some possible ways to figure out the minimal instance: 

 * see whether the ODF specification, and specifically use the ODF schema , along with 
the appropriate tool/library can be used to generate a minimal instance.  

 * do a bit of trial-and-error generate a ODF file and chop pieces as much as possible 
while feeding it to the ODF validator to see how far I can cut the file.   

DRAFT Version:  2007-06-07 15:24:53  Copyright Raymond Yee. 



Pro (Web 2.0) Mashup Development:  Remixing data and services (forthcoming book from Apress).   
(http://blog.mashupguide.net) 

5

Let's take a look at both approaches and see how far we get. 

The ODF Spec: does it answer the question of a minimal instance? 
The ODF specification is housed at: 
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=office 

OO.o 2.2 seems to be using the ODF 1.0 specificaltion (you can look at the XML 
declaration of content.xml 

The specification contains an Relax NG schema for ODF.  Links to the schemas , 
stemming from the oasis-open.org page include:  

 * The schema for office documents, "extracted from chapter 1 to 16 of the specification" 
– v 1.04 

 * "the normative schema for the manifest file used by the OpenDocument package 
format" – v 1.05 

 * " the strict schema for office documents that permits only meta information and 
formatting properties contained in this specification itself" – v 1.06 

I wonder whether a minimal instance of an ODF can be strictly derived from the shema 
itself. (In other words, are there libraries/tools to which I say pass them a Relax NG schema 
and say return me a minimal instance?  I've not found any so far.  The closest I've come in 
that department are the following references: 

 * There is supposed to be a Sun XML Instance Generator – but I can't find any code to 
download.  (Closest I get is the https://msv.dev.java.net/ 

 * http://www.stylusstudio.com/xml_generator.html points to a commericall XML 
Generator 

 * http://xmlbuddy.com/2.0/features.html mentions an instance generator. 

 * https://relax-ng.dev.java.net/ is a set of Java tools that might be able to generate a 
minimal instance of a Relax-NG schema. 

Trial and Error Search for an ODF Minimal Instance 
Eisenberg (p. 13) gives his answer to the quesion: 

The only files that are actually necessary are content.xml and the 
METAINF/manifest.xml file. If you create a file that contains word processor 
elements and zip it up and a manifest that points to that file, OpenOffice.org will 
be able to open it successfully. The result will be a plain text-only document with 

                                                 
4   http://www.oasis-open.org/committees/download.php/12571/OpenDocument-schema-v1.0-os.rng 
5   http://www.oasis-open.org/committees/download.php/12570/OpenDocument-manifest-schema-
v1.0-os.rng 
6   http://www.oasis-open.org/committees/download.php/12569/OpenDocument-strict-schema-v1.0-
os.rng 

DRAFT Version:  2007-06-07 15:24:53  Copyright Raymond Yee. 



Pro (Web 2.0) Mashup Development:  Remixing data and services (forthcoming book from Apress).   
(http://blog.mashupguide.net) 

6

no styles. You won’t have any of the meta-information about who created the file 
or when it was last edited, and the printer settings, view area, and zoom factor 
will be set to the OpenOffice.org defaults. 

Let's verify Eisenberg's assertion. If you create a odt file with only the same content.xml 
as helloworld.odt and edit METAINF/metadata.xml to reference only content.xml and the 
METAINF directory: 
<?xml version="1.0" encoding="UTF-8"?> 
<manifest:manifest 
xmlns:manifest="urn:oasis:names:tc:opendocument:xmlns:manifest:1.0"> 
 <manifest:file-entry manifest:media-type="application/vnd.oasis.opendocument.text" 
manifest:full-path="/"/> 
 <manifest:file-entry manifest:media-type="text/xml" manifest:full-
path="content.xml"/> 
</manifest:manifest> 

thus creating a odt that consists of only those two files,7  you will find that such a file will 
load successfully in OpenOffice.org 2.2 and the OpenDocumentViewer8   -- giving credence 
to the assertion that in OO.o 2.2 at least, you don't need any more than content.xml and 
META-INF/manifest.xml.   

You can download and install the OpenDocument Validator on a Unix system 9 or run the online version.10 

Nonetheless, the ODF Validator  (http://opendocumentfellowship.org/validator) doesn't 
find the file to be valid though, producing the following error message: 

   1. warning 
      does not contain a /mimetype file. This is a SHOULD in OpenDocument 1.0 
   2. error 
      styles.xml is missing 
   3. error 
      settings.xml is missing 
   4. error 
      meta.xml is missing 
Since the online validator dies on one of the Fellowship's test files,11 we can see there are 

some unresolved problems with the Validator and/or the test files produced by the 
OpenDocument Fellowship. 
                                                 
7   http://examples.mashupguide.net/ch17/helloworld_min_odt_1.odt 
8   http://opendocumentfellowship.org/odfviewer 
9   http://opendocumentfellowship.org/projects/odftools 
10   http://opendocumentfellowship.org/validator 
11  
 http://testsuite.opendocumentfellowship.org/testcases/General/DocumentStructure/SingleDocume
ntContents/testDoc/testDoc.odt via 
http://testsuite.opendocumentfellowship.org/testcases/General/DocumentStructure/SingleDocumentContent
s/TestCase.html 

DRAFT Version:  2007-06-07 15:24:53  Copyright Raymond Yee. 



Pro (Web 2.0) Mashup Development:  Remixing data and services (forthcoming book from Apress).   
(http://blog.mashupguide.net) 

7

If you insert skeletal styles.xml, settings.xml, and meta.xml, you can convince the ODF 
Validator to accept the resulting odt as a valid documentat..  That is, create a odt with the 
following files. (Strictly speaking, the namespace declearations are extraneous – but they are 
useful to have once you start plugging chunks of ODF):  

meta.xml: 
<?xml version="1.0" ?> 
<office:document-meta office:version="1.0" 
xmlns:dc="http://purl.org/dc/elements/1.1/" 
xmlns:meta="urn:oasis:names:tc:opendocument:xmlns:meta:1.0" 
xmlns:office="urn:oasis:names:tc:opendocument:xmlns:office:1.0" 
xmlns:ooo="http://openoffice.org/2004/office" 
xmlns:xlink="http://www.w3.org/1999/xlink"/> 

 
settings.xml: 

<?xml version="1.0" ?> 
<office:document-settings office:version="1.0" 
xmlns:config="urn:oasis:names:tc:opendocument:xmlns:config:1.0" 
xmlns:office="urn:oasis:names:tc:opendocument:xmlns:office:1.0" 
xmlns:ooo="http://openoffice.org/2004/office" 
xmlns:xlink="http://www.w3.org/1999/xlink" /> 

 
styles.xml: 

<?xml version="1.0" ?> 
<office:document-styles office:version="1.0" 
xmlns:chart="urn:oasis:names:tc:opendocument:xmlns:chart:1.0" 
xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dom="http://www.w3.org/2001/xml-
events" xmlns:dr3d="urn:oasis:names:tc:opendocument:xmlns:dr3d:1.0" 
xmlns:draw="urn:oasis:names:tc:opendocument:xmlns:drawing:1.0" 
xmlns:fo="urn:oasis:names:tc:opendocument:xmlns:xsl-fo-compatible:1.0" 
xmlns:form="urn:oasis:names:tc:opendocument:xmlns:form:1.0" 
xmlns:math="http://www.w3.org/1998/Math/MathML" 
xmlns:meta="urn:oasis:names:tc:opendocument:xmlns:meta:1.0" 
xmlns:number="urn:oasis:names:tc:opendocument:xmlns:datastyle:1.0" 
xmlns:office="urn:oasis:names:tc:opendocument:xmlns:office:1.0" 
xmlns:ooo="http://openoffice.org/2004/office" 
xmlns:oooc="http://openoffice.org/2004/calc" 
xmlns:ooow="http://openoffice.org/2004/writer" 
xmlns:script="urn:oasis:names:tc:opendocument:xmlns:script:1.0" 
xmlns:style="urn:oasis:names:tc:opendocument:xmlns:style:1.0" 
xmlns:svg="urn:oasis:names:tc:opendocument:xmlns:svg-compatible:1.0" 
xmlns:table="urn:oasis:names:tc:opendocument:xmlns:table:1.0" 
xmlns:text="urn:oasis:names:tc:opendocument:xmlns:text:1.0" 
xmlns:xlink="http://www.w3.org/1999/xlink" /> 

 
content.xml: 

<?xml version="1.0" ?> 
<office:document-content office:version="1.0" 
xmlns:chart="urn:oasis:names:tc:opendocument:xmlns:chart:1.0" 
xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dom="http://www.w3.org/2001/xml-
events" xmlns:dr3d="urn:oasis:names:tc:opendocument:xmlns:dr3d:1.0" 
xmlns:draw="urn:oasis:names:tc:opendocument:xmlns:drawing:1.0" 

DRAFT Version:  2007-06-07 15:24:53  Copyright Raymond Yee. 



Pro (Web 2.0) Mashup Development:  Remixing data and services (forthcoming book from Apress).   
(http://blog.mashupguide.net) 

8

xmlns:fo="urn:oasis:names:tc:opendocument:xmlns:xsl-fo-compatible:1.0" 
xmlns:form="urn:oasis:names:tc:opendocument:xmlns:form:1.0" 
xmlns:math="http://www.w3.org/1998/Math/MathML" 
xmlns:meta="urn:oasis:names:tc:opendocument:xmlns:meta:1.0" 
xmlns:number="urn:oasis:names:tc:opendocument:xmlns:datastyle:1.0" 
xmlns:office="urn:oasis:names:tc:opendocument:xmlns:office:1.0" 
xmlns:ooo="http://openoffice.org/2004/office" 
xmlns:oooc="http://openoffice.org/2004/calc" 
xmlns:ooow="http://openoffice.org/2004/writer" 
xmlns:script="urn:oasis:names:tc:opendocument:xmlns:script:1.0" 
xmlns:style="urn:oasis:names:tc:opendocument:xmlns:style:1.0" 
xmlns:svg="urn:oasis:names:tc:opendocument:xmlns:svg-compatible:1.0" 
xmlns:table="urn:oasis:names:tc:opendocument:xmlns:table:1.0" 
xmlns:text="urn:oasis:names:tc:opendocument:xmlns:text:1.0" 
xmlns:xforms="http://www.w3.org/2002/xforms" 
xmlns:xlink="http://www.w3.org/1999/xlink" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> 
  <office:body> 
    <office:text> 
      <text:p> 
        Hello World! 
      </text:p> 
    </office:text> 
  </office:body> 
</office:document-content> 

 
manifest.xml 

<?xml version="1.0" encoding="UTF-8"?> 
<manifest:manifest 
xmlns:manifest="urn:oasis:names:tc:opendocument:xmlns:manifest:1.0"> 
  <manifest:file-entry manifest:media-type="application/vnd.oasis.opendocument.text" 
manifest:full-path="/"/> 
  <manifest:file-entry manifest:media-type="text/xml" manifest:full-
path="content.xml"/> 
  <manifest:file-entry manifest:media-type="text/xml" manifest:full-
path="meta.xml"/> 
  <manifest:file-entry manifest:media-type="text/xml" manifest:full-
path="settings.xml"/> 
  <manifest:file-entry manifest:media-type="text/xml" manifest:full-
path="styles.xml"/>  
</manifest:manifest> 

 
you can a minimal and valid ODF document. See: 

http://examples.mashupguide.net/ch17/helloworld_min_odt_2.odt 
 
As an exercise to the reader, I leave it to you to generate minimal instances of the 

spreadsheet (.ods), presentation (.odp), graphics (.odg), and math (.odf) documents. 
Why should we care about minimal instances of ODF (and later OOXML) documents?  

ODF and OOXML are complicated markup formats.  One of the best ways to figure out how 
to create formats is to use a tool such as OO.o and Microsoft Office to generate what you 

DRAFT Version:  2007-06-07 15:24:53  Copyright Raymond Yee. 



Pro (Web 2.0) Mashup Development:  Remixing data and services (forthcoming book from Apress).   
(http://blog.mashupguide.net) 

9

want, save the file, unzip the file, extract the section of the document you want, and plug that 
stuff into a minimalist document that you know is valid.  That's why we are looking at boiling 
ODF down to its essense.  Alas I wish there were a more definitive way to know what is here 
is actual minimal.  But it's a good start.  I've uploaded the file to  

So what to do? 
ODF is a promising format but is immature.  We can wait until some better libraries are 
in place.  In the meantime, you can make some good progress by using a tool such as 
OpenOffice.org to generate by hand a document along the lines of what you want to 
generate programmatically.  Unzip the file, extract the relevant pieces, and use that as a 
template that your program will fill out.  You might be able to get things working without 
worrying about issues of validity, depending on what you are trying to accomplish. 

The single XML document format – how to generate an instance? 
I know that there is supposed to a single XML version of an ODF document – but I've not 
figured out how to generate an instance. 

I hope to have answer to this question in the next revision of this document. 

Resolving the Validity/Minimal Instance Issues  
Followup I plan to do to resolve some the unresolved issues in this chapter: 

 * Contact Alex Hudson, the author of the ODF Validator: 
http://www.alexhudson.com/contact 

 * Daniel Carrera, the informal lead of ODF Fellowship: 
http://daniel.carrera.name/about-me/ 

 * contact J. David Eisenberg, the author of the book on ODF (http://books.evc-
cit.info/index.html) 

 * follow up on the post I made on the ODF developer list: 
http://lists.opendocumentfellowship.org/pipermail/odf-discuss/2007-June/002110.html 

 * chat with folks on  IRC: http://opendocumentfellowship.org/about_us/contact/irc 

 * report a bug in example 2.1 of http://opendocumentfellowship.org/files/api-for-
odfpy.odt – doc should be textdoc. 

DanielC's advice: " My advice to get started with ODF is to use OOo to save a blank 
document with the styles you want, and then just insert your content inside <office:text>" 

Note:  You can work with the ODF validator: http://opendocumentfellowship.org/validator to see how far we can 
boil our document down and still have a valid ODF file.  The tool is also downloadable: 
http://opendocumentfellowship.org/projects/odftools 

DRAFT Version:  2007-06-07 15:24:53  Copyright Raymond Yee. 



Pro (Web 2.0) Mashup Development:  Remixing data and services (forthcoming book from Apress).   
(http://blog.mashupguide.net) 

10

Some Other Useful References 
ODF has some basic similarities to the OpenOffice 1.0 document format -- but they are not 
the same. Documentation of the exact similarities and differences between the OpenOffice 
1.0 format (http://xml.openoffice.org/general.html) and the ODF format would be incredibly 
useful – but I've not yet found such a document.  Because of the similarities, some of the old 
tutorials related to OpenOffice.org 1.0 are still potentially useful, such as:   
http://www.xml.com/pub/a/2005/01/26/hacking-ooo.html 

You can find a list of implementation of ODF at 
http://opendocumentfellowship.org/applications 

I've been trying to figure out what version of ODF is actually in OO.o and KOffice. 

The collection of sample ODF documents can come in handy:  
http://testsuite.opendocumentfellowship.org/ 

API kits for working with ODF 
In the previous sections, we looked at the approach of working directly with the ODF 
specification and the Validator and using trial and error to generate valid ODF files.  In 
this section, we move up the abstraction ladder and look at using libraries/API 
kits/wrapper libraries that work with ODF.  Such libraries can be a huge help if they are 
implemented well and reflect conscientious effort on the part of the authors to wrestle 
with some of the issues we discuss in the previous section. 

 A good list of tools that support ODF is: 
http://en.wikipedia.org/wiki/OpenDocument_software 

Another good list is: 
http://opendocumentfellowship.org/development/tools 

Let me highlight some useful bits: 

 * http://opendocumentfellowship.org/projects/odfpy According to documentation for 
odfpy: "Odfpy aims to be a complete API for OpenDocument in Python. Unlike other 
more convenient APIs, this one is essentially an abstraction layer just above the XML 
format. The main focus has been to prevent the programmer from creating invalid 
documents. It has checks that raise an exception if the programmer adds an invalid 
element, adds an attribute unknown to the grammar, forgets to add a required attribute 
or adds text to an element that doesn't allow it." 

 * OpenDocumentPHP (http://opendocumentphp.org/) – which is at the early stages of 
development 

 * There's a .NET library that is for sale: http://www.independentsoft.de/odf/   

DRAFT Version:  2007-06-07 15:24:53  Copyright Raymond Yee. 



Pro (Web 2.0) Mashup Development:  Remixing data and services (forthcoming book from Apress).   
(http://blog.mashupguide.net) 

11

 * I would think that there should be some decent Java libraries since OpenOffice.org, 
probably the single best parser and generator of ODF documents, is largely written in 
Java.  I don't know of standalone Java libraries that use the logic built in OO.o – but 
there are libraries that depend on OO.o itself (see below). 

odfpy 
Maybe using ODFPY will help us generate minimal documents easily.  Let's give it a try.  
To use it, follow the documentation at  
http://opendocumentfellowship.org/files/api-for-odfpy.odt 

To install the library: 
svn export http://opendocumentfellowship.org/repos/odfpy/trunk odfpy 

python setup.py install 

To generate a Hello world document: 
from odf.opendocument import OpenDocumentText 
from odf.text import P 
 
textdoc = OpenDocumentText() 
p = P(text="Hello World!") 
textdoc.text.addElement(p) 
textdoc.save("helloworld_odfpy.odt") 

you will get helloworld_odfpy.odt with the following file structure: 
File Name                                             Modified             Size 
mimetype                                       2007-06-04 14:46:50           39 
styles.xml                                     2007-06-04 14:46:50          451 
content.xml                                    2007-06-04 14:46:50          514 
settings.xml                                   2007-06-04 14:46:50          383 
meta.xml                                       2007-06-04 14:46:50          429 
META-INF/manifest.xml                          2007-06-04 14:46:50          854 

  
But the generated instance doesn't validate, even though OO.o 2.2 has no problem 

reading the file.  For many practical purposes, this may be OK – though it'd be nice to know 
that a document coming out of odfpy is valid since that's the stated design goal of odfpy. 

OpenDocumentPHP 
In this subsection, I use OpenDocumentPHP version 0.5.1, which you can get from  
 http://downloads.sourceforge.net/opendocumentphp/OpenDocumentPHP-0.5.1.zip 

Documentation of the API is currently auto-generated: 
http://opendocumentphp.org/static/apidoc/svn/ 

Unzip the file in your PHP library area.  To see a reasonably complicated example of 
what you can do, consult the samples in OpenDocumentPHP/samples. 

DRAFT Version:  2007-06-07 15:24:53  Copyright Raymond Yee. 



Pro (Web 2.0) Mashup Development:  Remixing data and services (forthcoming book from Apress).   
(http://blog.mashupguide.net) 

12

Here I will write a simple helloworld generated document right now to demonstrate how 
to get started with the library. 
<?php 
require_once 'OpenDocumentPHP/OpenDocumentText.php'; 
$text = new 
OpenDocumentText('D:\Document\PersonalInfoRemixBook\examples\ch17\helloworld_opendoc
umentphp.odt'); 
$textbody = $text->getBody(); 
$paragraph = $textbody->nextParagraph(); 
$paragraph->append('Hello World!'); 
$text->close(); 
?> 

I think that this code should work – but it causes the same error as the sample program.  
So at this point, I'd wait until OpenDocumentPHP moves a bit further along.   

I couldn't get the zip library installed on dreamhost.   

pecl install –prefix=/home/rdhyee/phplib zip caused files to be installed in the wrong 
place.  I've tried to do some manual installation following 
http://us2.php.net/manual/en/install.pecl.phpize.php – but that's not been too 
successful as yet. 

Leveraging OO.o to generate ODF 
If you are willing and able to have OpenOffice.org installed on your computer, it is posible to 
use OO.o itself as a big library of sorts to parse and generated your ODF documents – and to 
convert ODF to and from other formats.  Libraries/tools that use this approach include: 

 * JOOC Java Library (http://jooreports.sourceforge.net/?q=jooconverter) 

 * OOoLib – Perl and Python libraries that use OO.o 
(http://sourceforge.net/projects/ooolib/) 

In Win32 oriented systems, you can access OpenOffice.org via a COM interface.  For 
instnace, the following Python running the win32all library will generate a new .odt 
document by scripting OO.o: 

 
import win32com.client 
 
objServiceManager = win32com.client.Dispatch("com.sun.star.ServiceManager") 
objServiceManager._FlagAsMethod("CreateInstance") 
objDesktop = objServiceManager.CreateInstance("com.sun.star.frame.Desktop") 
objDesktop._FlagAsMethod("loadComponentFromURL") 
 
args = [] 
objDocument = objDesktop.loadComponentFromURL("private:factory/swriter", "_blank", 
0, args) 
objDocument._FlagAsMethod("GetText") 
objText = objDocument.GetText() 
objText._FlagAsMethod("createTextCursor","insertString") 

DRAFT Version:  2007-06-07 15:24:53  Copyright Raymond Yee. 



Pro (Web 2.0) Mashup Development:  Remixing data and services (forthcoming book from Apress).   
(http://blog.mashupguide.net) 

13

objCursor = objText.createTextCursor() 
objText.insertString(objCursor, "The first line in the newly created text 
document.\n", 0) 

Note:  It will take some amount of research to make effective use of these interfaces.   

Ecma Office Open XML (OOXML) 
Now we turn to a competing file format:  Office Open XML.  The Wikpedia provides a 
good overview of the specification that undergirds Microsoft Office 2007 is 
http://en.wikipedia.org/wiki/Office_Open_XML 

The Office Open XML specification has been made into an ECMA standard (ECMA-
376).  The specification can be found at: 
http://www.ecma-international.org/publications/standards/Ecma-376.htm 

Note that the standard runs to 6000 pages – in case you want to read it! 

ECMA provides an overview white paper: 
http://www.ecma-international.org/news/TC45_current_work/OpenXML%20White%20Paper.pdf 

Getting hard, easy-to-digest information on OOXML is challenging.  I recommend the 
following, more colloquial overviews that you might find useful 
 * 5 Cool Things You Must Know About the New Office 2007 File Formats 

(http://www.devx.com/MicrosoftISV/Article/30907/2046) 

 * http://openxmldeveloper.org/default.aspx might have useful tutorials on the subject. 

In working with Office Open XML, it's good to heed the following warning: "Open XML 
is a new standard. So new, in fact, that the schemas are still being edited and haven't been 
published by Ecma yet. And there are no books out on Open XML development, 
although that will surely change in the next year."12  Although ECMA has published 
schemas, I still find it a challenge to get my head around the details of OOXML.  

The Office Open XML format has a predecessor in the Microsoft Office 2003 XML 
format.  In the book Office 2003 XML, the following was given as a minimalist document 
Office 2003 XML document: 
<?xml version="1.0"?> 
<?mso-application progid="Word.Document"?> 
<w:wordDocument 
  xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml"> 
  <w:body> 
    <w:p> 
      <w:r> 
        <w:t>Hello, World!</w:t> 

                                                 
12   http://openxmldeveloper.org/articles/LearningOnline.aspx accessed on June 5, 2007. 

DRAFT Version:  2007-06-07 15:24:53  Copyright Raymond Yee. 



Pro (Web 2.0) Mashup Development:  Remixing data and services (forthcoming book from Apress).   
(http://blog.mashupguide.net) 

14

      </w:r> 
    </w:p> 
  </w:body> 
</w:wordDocument> 
 

This document is actually readable by Microsoft Office 2007, though in "compatibility 
mode".  Can we get a valid document by using the Microsoft Office 2003 document and 
updating the namespace of the document?  That is, Can we just update the namespace for 
w?  
xmlns:w="http://schemas.openxmlformats.org/wordprocessingml/2006/main" 

to generate 

<?xml version="1.0"?> 
<?mso-application progid="Word.Document"?> 
<w:wordDocument 
  xmlns:w=" http://schemas.openxmlformats.org/wordprocessingml/2006/main "> 
  <w:body> 
    <w:p> 
      <w:r> 
        <w:t>Hello, World!</w:t> 
      </w:r> 
    </w:p> 
  </w:body> 
</w:wordDocument> 
 

No – that doesn't work.  We can certainly keep pushing in this direction by looking 
through the spec and schema.   However, the the most promising lead right now is to see 
what gets written out by a simple little  C# script at  
http://blogs.msdn.com/dmahugh/archive/2006/06/27/649007.aspx   

I downloaded the free (as in free beer) Microsoft Visual Studio C# (Express Edition) to 
run the script and made a small change to update the namespace – from 
http://schemas.openxmlformats.org/wordprocessingml/2006/3/main 

to 
http://schemas.openxmlformats.org/wordprocessingml/2006/main 

With that change, I was able to generate a simple Office Open XML document file 
(http://examples.mashupguide.net/ch17/helloworld_simple.1.docx) that is acceptable by 
Microsoft Office 2007.  (This doesn't prove that the file is valid but only that we are on the 
right track in terms of generating OOXML.)  

Unzipping and studying the file gives you insight into what goes into a minimal instance 
of OOXML.  The list of files is: 

 
File Name                                             Modified             Size 
word/document.xml                              2007-06-04 16:43:44          246 
[Content_Types].xml                            2007-06-04 16:43:44          346 
_rels/.rels                                    2007-06-04 16:43:44          285 

DRAFT Version:  2007-06-07 15:24:53  Copyright Raymond Yee. 



Pro (Web 2.0) Mashup Development:  Remixing data and services (forthcoming book from Apress).   
(http://blog.mashupguide.net) 

15

Let's look at the individual files.  The first is the document.xml file in the word directory, 
which holds the "content" of the document and corresponds most closely to content.xml in 
ODF. 
 

<?xml version="1.0" encoding="utf-8"?> 
<w:document 

xmlns:w="http://schemas.openxmlformats.org/wordprocessingml/2006/main"> 
  <w:body> 
    <w:p> 
      <w:r> 
        <w:t>Hello World!</w:t> 
      </w:r>  
    </w:p> 
  </w:body> 
</w:document> 
 
The .rels file in the _rels directory contains information about "relationships" among the 

various files that make up the package of files  (a bit like the METAINF/meta.xml file in ODF): 
 
<?xml version="1.0" ?> 
<Relationships 

xmlns="http://schemas.openxmlformats.org/package/2006/relationships"> 
  <Relationship Id="rId1" Target="/word/document.xml" 

Type="http://schemas.openxmlformats.org/officeDocument/2006/relationships/officeDocume
nt"/> 

</Relationships> 
 
The final file in the package is [Content_Types].xml:                         
 
<?xml version="1.0" ?> 
<Types xmlns="http://schemas.openxmlformats.org/package/2006/content-types"> 
  <Default ContentType="application/vnd.openxmlformats-

officedocument.wordprocessingml.document.main+xml" Extension="xml"/> 
  <Default ContentType="application/vnd.openxmlformats-package.relationships+xml" 

Extension="rels"/> 
</Types> 
 
These files should give you a feel of what's in OOXML.  To learn more, take a look at the 

following resources: 

 * The "Ecma Office Open XML Format Guide" is an official high level 
conceptual/marketing overview of OOXML. 13 

 * http://openxmldeveloper.org/articles/directory.aspx lists tutorial articles that are 
gathered by the OOXML community. 

                                                 
13   http://office.microsoft.com/en-us/products/HA102057841033.aspx 

 

DRAFT Version:  2007-06-07 15:24:53  Copyright Raymond Yee. 



Pro (Web 2.0) Mashup Development:  Remixing data and services (forthcoming book from Apress).   
(http://blog.mashupguide.net) 

16

 * http://openxmldeveloper.org/articles/OpenXMLsamples.aspx has sample OOXML 
documents. 

 * http://msdn2.microsoft.com/en-us/library/bb187361.aspx gives the object model of 
Microsoft Office 2007. 

 * http://en.wikipedia.org/wiki/User:Flemingr/Microsoft_Office_2003_XML_formats 
documents the older Office 2003 XML format, which has some family resemblance to 
OOXML – though an unclear on e to me.   

 * Brian Jones of Microsoft has written some clear tutorials on generating spreadsheets in 
OOXML:  http://blogs.msdn.com/brian_jones/archive/2007/05/29/simple-
spreadsheetml-file-part-3-formatting.aspx 

Viewers/Validators for OOXML 
Presumably a big point of OOXML is being able to read and generate documents that are 
readable in the latest versions of Microsoft Office without having to directly manipulate 
the object models of Microsoft Office.  Yet, it's always helpful to have tools that view 
and validate OOXML documents – other than Microsoft Office 2007 itself.  Some 
promising tools are: 
 * Open XML Package Explorer, which lets you browse and edit Open XML packages 

and validate against the ECMA final schemas. 
(http://www.codeplex.com/PackageExplorer) 

 * If you are using Microsoft Office XP and 2003, you can download a "Microsoft Office 
Compatibility Pack for Word, Excel, and PowerPoint 2007 File Formats" to read and 
write OOXML.14  This Compatiblity Pack will also enable you to use the free  
Microsoft Office Word Viewer 2003 and Microsoft Office Excel Viewer 2003 to view 
Word 2007 and Excel 2007 files.15 

Comparing ODF and OOXML  
I will not get into surveying the complicated and often heated comparisons made between 
ODF and OOXML other than to refer you to the following articles, which in turn provide 
more references: 
 *
 http://en.wikipedia.org/wiki/Comparison_of_OpenDocument_and_Office_Open_XML_for
mats 
 *
 http://weblog.infoworld.com/realitycheck/archives/2007/05/odf_vs_openxml.html 
gives a flavor of the conflation of political, economical, PR, technical issues. 

 

                                                 
14   http://www.microsoft.com/downloads/details.aspx?FamilyId=941b3470-3ae9-4aee-8f43-
c6bb74cd1466&displaylang=en 
15   http://support.microsoft.com/kb/925180 

DRAFT Version:  2007-06-07 15:24:53  Copyright Raymond Yee. 



Pro (Web 2.0) Mashup Development:  Remixing data and services (forthcoming book from Apress).   
(http://blog.mashupguide.net) 

17

Online Office Suites 
Web-based offices suites are emerging, in addition to the traditional desktop office suites 
and their respective file formats.   Prominent examples of such applications include the 
Zoho Office Suite (http://zoho.com/) and Google Docs and Sheets 
(http://docs.google.com/).  There are others, of course.  See a list of online spreadsheets, 
for instance:  
http://en.wikipedia.org/wiki/List_of_online_spreadsheets 

I will focus specifically on using a programmable online spreadsheet – specifically 
Google Spreadsheet – in this section.  The Google Spreadsheet has an API (which we will 
use in a mashup later in the chapter):  
http://code.google.com/apis/spreadsheets/overview.html 

Usage Scenarios for Programmable Online 
Spreadsheets 
What might one want to do with an online spreadsheet?  Here are a few examples I 
brainstormed: 
 * Tracking one's weight, finances, or time and sharing that info with your family and 

friends – or not! 

 * Having bots calculate data that they put into my spreadsheets that I can then analyze. 
For instance, if I wanted to track my stock portfolio, I could use the StrikeIron fee-
based real-time stock quote service to calculate the value of my portfolio.  (I might 
think twice before storing that portfolio info online, however – but this is feasible in 
principle.) . 

 * Build an application to track and disseminate grades 

 * Manage a wedding database 

 * Build a project management tool which I can update and read with the API. 

 * Backup a list of my del.icio.us bookmarks in a spreadsheet form 

 * my library books 

 *  build online charts:  http://imagine-it.org/google/spreadsheets/makechart.htm 

There are many other applications.  Consider StrikeIron SOA Express™ for Excel  
(http://www.strikeiron.com/tools/tools_soaexpress.aspx) as a source of hints about what 
people might do with Google Spreadsheet API – if you started to think of the Google 
spreadsheet as  Excel into the cloud but account for its lack of some of Excel's current 
internal exstensibility (i.e., macros.)  (There is no equivalent to Google Mapplets for the 
Spreadsheet or VBA macros – yet.) 

 

DRAFT Version:  2007-06-07 15:24:53  Copyright Raymond Yee. 



Pro (Web 2.0) Mashup Development:  Remixing data and services (forthcoming book from Apress).   
(http://blog.mashupguide.net) 

18

The application I will demonstrate in detail is copying my amazon.com wishlist to a 
spreadsheet to more easily take that information with me (say to a real-life bookstore or 
library) – and current price. 

Google Spreadsheet API 
Let's figure out how to use the Google Spreadsheet API, focusing specifically on PHP 
and Python wrapper libraries.  You can also directly manipulate the feed protocol: 
http://code.google.com/apis/spreadsheets/developers_guide_protocol.html 

PHP 
The main page for the service is: 

http://code.google.com/apis/spreadsheets/overview.html 
Builds on GData. For PHP, that means we can use the Zend Googld Data Client Library 

and follow the documentation at 
http://framework.zend.com/manual/en/zend.gdata.spreadsheets.html 

The library is under development and is a bit buggy.  Here's I discovered so far.  I 
downloaded 1.0.0RC1 and unzipped it to examples.mashupguide.net as 
http://examples.mashupguide.net/lib/ZendFramework-1.0.0-RC1/  

Alas none of the GData demos work out of the box in this release. 
Things worked a bit better in a previous version of the Zend GData framework – once I 

commented out require_once('Zend.php'). Try them at 
http://examples.mashupguide.net/lib/ZendFramework-0.9.3-
Beta/demos/Zend/Gdata/ 

I've also downloaded the latest version of the ZendFramework (under svn control) to 
track development of the project, which I hope will respond to bug reports.  
(http://examples.mashupguide.net/lib/ZendFrameworkCurrent/trunk/) 

Basic conclusion:  Wait until the full release of the ZendFramework 1.0.0 and then try 
again.... 

Python 
Google provides a Python GData library and sample code to access the Google spreadsheet.  
You can either download specific releases (from http://code.google.com/p/gdata-python-
client/downloads/list) or access the svn repository 
svn checkout http://gdata-python-client.googlecode.com/svn/trunk/ 
gdata-python-client 

I will use the svn image as of June 5, 2007. 

Note the dependencies on other libraries, especially ElementTree, which is not part of the 
standard Python libraries until version 2.5.16  

                                                 
16   http://code.google.com/p/gdata-python-client/wiki/DependencyModules 

DRAFT Version:  2007-06-07 15:24:53  Copyright Raymond Yee. 



Pro (Web 2.0) Mashup Development:  Remixing data and services (forthcoming book from Apress).   
(http://blog.mashupguide.net) 

19

I highly recommend reading the documentation on the Google site specific to the Python 
library: 
http://code.google.com/apis/spreadsheets/developers_guide_python.html 

Once you have the Python GData library installed, you can try out some code samples – 
using the Python interprester -- to teach yourself how it works: 

First the obligatory imports: 
 
import gdata.spreadsheet.service 

 
Let's then declare some convenience functions and variables 

 
GoogleUser = "[your Google email address]" 
GooglePW = "[your password]" 

Define the following convenience function: 
 

def GSheetService(user,pwd): 
    gd_client = gdata.spreadsheet.service.SpreadsheetsService() 
    gd_client.email = user 
    gd_client.password = pwd 
    gd_client.source = 'amazonWishListToGSheet.py' 
    gd_client.ProgrammaticLogin() 
 
    return gd_client     

 
Instantiate a Google Data client for your spreadsheet: 

gs = GSheetService(GoogleUser,GooglePW) 
sheets = gs.GetSpreadsheetsFeed() 

To get a list of the spreadsheets, their titles and ids: 
map(lambda e: e.title.text + " : "  + e.id.text.rsplit('/', 1)[1],sheets.entry) 

yields something like the following (which is based on my own spreadsheets): 
['My Amazon WishList : o06341737111865728099.3585145106901556666', 'Udell Mini-
Symposium May 1, 2007 : o06341737111865728099.1877210150658854761', 'weight.journal 
: o06341737111865728099.6289501454054682788', 'Plan : 
o10640374522570553588.5762564240835257179'] 

Note the key for the spreadsheet "My Amazon WishList" – the spreadsheet we'll be 
reading from and writing to: 

o06341737111865728099.3585145106901556666 

In the browser, if I'm logged in as the owner of the spreadsheet, I can access: 
http://spreadsheets.google.com/feeds/spreadsheets/private/full/o06341737111865728099
.3585145106901556666 

Otherwise, I get a 404 error. Now I need to get the ID of the one worksheet in the "My 
Amazon Wishlist" spreadsheet. 
gs.GetWorksheetsFeed(key="o06341737111865728099.3585145106901556666").entry[0].id.te
xt  

DRAFT Version:  2007-06-07 15:24:53  Copyright Raymond Yee. 



Pro (Web 2.0) Mashup Development:  Remixing data and services (forthcoming book from Apress).   
(http://blog.mashupguide.net) 

20

returns 
http://spreadsheets.google.com/feeds/worksheets/o06341737111865728099.35851451069015
56666/private/full/od6 

and  
gs.GetWorksheetsFeed(key="o06341737111865728099.3585145106901556666").entry[0].id.te
xt.rsplit('/', 1)[1] 

gets you the worksheet id:  
od6 

There are two ways to get at the data – either in a "list-based" way that gets you rows or in a 
"cell-based" way that gets you by a range of cells.  We will use the row-based method, which 
depends on the assumption that the first row is the header row. 

For testing purposes, I created a spreadsheet with the header row and one line of data that I 
entered: 
ASIN DetailPageURL Title Author Date Added Price Quantity Desired 

1590598385 http://www.amazon.com/gp/product/1590598385/  Smart and Gets 
Things Done: Joel Spolsky's Concise Guide to Finding the Best Technical Talent 
(Hardcover)  Joel Spolsky 6/5/2007 13.25 1 

lfeed = 
gs.GetListFeed(key="o06341737111865728099.3585145106901556666",wksht_id="od6") 

returns a feed for the rows (there's only one).  You can see the "content" of the row with 
lfeed.entry[0].content.text 

which is 

'ASIN: 1590598385, DetailPageURL: 
http://www.amazon.com/gp/product/1590598385/ref=wl_it_dp/103-8266902-
5986239?ie=UTF8&coliid=I1A0WT8LH796DN&colid=1U5EXVPVS3WP5, Author: Joel Spolsky, 
Date Added: 6/5/2007, Price: 13.25, Quantity Desired: 1' 

lfeed.entry[0].custom 

holds the data that has been mapped from namespace-extended elements in the entry (See 
http://code.google.com/apis/spreadsheets/developers_guide_protocol.html#listFeedExample). 
Specifically: 
map(lambda e: (e[0],e[1].text), lfeed.entry[0].custom.items())  

returns 
[('asin', '1590598385'), ('dateadded', '6/5/2007'), ('detailpageurl', 
'http://www.amazon.com/gp/product/1590598385/ref=wl_it_dp/103-8266902-
5986239?ie=UTF8&coliid=I1A0WT8LH796DN&colid=1U5EXVPVS3WP5'), ('author', 'Joel 
Spolsky'), ('quantitydesired', '1'), ('price', '13.25'), ('title', "Smart and Gets 
Things Done: Joel Spolsky's Concise Guide to Finding the Best Technical Talent 
(Hardcover) ")] 

Now let's look at adding another row of data.  Let's see whether we can just duplicate the 
row by creating a dictionary of the first row and stick it into the second row. 

DRAFT Version:  2007-06-07 15:24:53  Copyright Raymond Yee. 



Pro (Web 2.0) Mashup Development:  Remixing data and services (forthcoming book from Apress).   
(http://blog.mashupguide.net) 

21

h = {} 
for (key,value) in lfeed.entry[0].custom.iteritems(): 
  h[key] = value.text 

h now is: 
{'asin': '1590598385', 'dateadded': '6/5/2007', 'detailpageurl': 
'http://www.amazon.com/gp/product/1590598385/ref=wl_it_dp/103-8266902-
5986239?ie=UTF8&coliid=I1A0WT8LH796DN&colid=1U5EXVPVS3WP5', 'author': 'Joel 
Spolsky', 'quantitydesired': '1', 'price': '13.25', 'title': "Smart and Gets Things 
Done: Joel Spolsky's Concise Guide to Finding the Best Technical Talent (Hardcover) 
"} 

To add the new role: 
gs.InsertRow(row_data=h,key="o06341737111865728099.3585145106901556666",wksht_id="od
6") 

To clear the second row that we just added, first we need to get an update lfeed that 
reflects the current state of the spreadsheet/worksheet: 
lfeed = 
gs.GetListFeed(key="o06341737111865728099.3585145106901556666",wksht_id="od6") 
gs.DeleteRow(lfeed.entry[1]) 

Note:  the Google Spreadsheet Data API is under active development and is still in the process of maturation 

Since this is a pretty RESTful service based on Atom, that you could write your own 
fairly generic code to manipulate the feeds instead of relying on the Google library.  I am not 
convinced that you wouldn't just end up having to replicate what the Google library does 
anyhow. 

Mashup: Amazon wishlist and Google 
Spreadsheet Mashup 
To show how to use the Google Spreadsheet for a simple mashup, I will show you how to 
write code that will transfer the contents of an Amazon Wishlist to a Google Spreadsheet.  
Why do that?  I use my wishlist to keep track of books and other stuff that I find interesting.  
If the wishlist belonged to someone else, I might want to download it into a spreadsheet to 
make it easier to generate a paper shopping list I could use.   

Accessing the Wishlist through the Amazon ECS web service 
First, a word about how you can use awszone.com to help you formulate the right 

Amazon ECS query to get the information you are looking for.  I figured out that I wanted to 
use the "ListLookup" query by using 
http://www.awszone.com/scratchpads/aws/ecs.us/ListLookup.aws  

Furthermore, I was using a ListType=WishList and the ListID=1U5EXVPVS3WP5.  The URL 
for web interface to an amazon wishlist is: 

DRAFT Version:  2007-06-07 15:24:53  Copyright Raymond Yee. 



Pro (Web 2.0) Mashup Development:  Remixing data and services (forthcoming book from Apress).   
(http://blog.mashupguide.net) 

22

http://www.amazon.com/gp/registry/wishlist/[ListID]/ 

I can get info about the list with the following query: 



Pro (Web 2.0) Mashup Development:  Remixing data and services (forthcoming book from Apress).   
(http://blog.mashupguide.net) 

23

    convenience function to return all the text in an array of nodes 
    """ 
    rc = "" 
    for node in nodelist: 
        if node.nodeType == node.TEXT_NODE: 
            rc = rc + node.data 
    return rc 
 
GoogleUser = "[YOUR ID]" 
GooglePW = "[YOUR PASSWORD]" 
GSheet_KEY = "o06341737111865728099.3585145106901556666" 
GWrkSh_ID = "od6" 
 
# a sample row for testing the insertion of a row into the spreadsheet 
GS_Example_Row = {'asin': '1590598385', 'dateadded': '6/5/2007', 'detailpageurl': 
'http://www.amazon.com/gp/product/1590598385/ref=wl_it_dp/103-8266902-
5986239?ie=UTF8&coliid=I1A0WT8LH796DN&colid=1U5EXVPVS3WP5', 'author': 'Joel 
Spolsky', 'quantitydesired': '1', 'price': '13.25', 'title': "Smart and Gets Things 
Done: Joel Spolsky's Concise Guide to Finding the Best Technical Talent (Hardcover) 
"} 
GS_HEADER = ['ASIN', 'DetailPageURL', 'Title', 'Author', 'Date Added', 'Price', 
'Quantity Desired'] 
GS_KEYS = ['asin', 'detailpageurl', 'title', 'author', 'dateadded', 'price', 
'quantitydesired'] 
 
class GSheetForAmazonList: 
    def __init__(self,user=GoogleUser,pwd=GooglePW): 
        gd_client = gdata.spreadsheet.service.SpreadsheetsService() 
        gd_client.email = user 
        gd_client.password = pwd 
        gd_client.source = 'amazonListToGsheet.py' 
        gd_client.ProgrammaticLogin() 
        self.gd_client = gd_client 
    def setKey(self,key): 
        self.key = key 
    def setWkshtId(self,wksht_id): 
        self.wksht_id = wksht_id         
    def listSpreadsheets(self): 
        """ 
        return a list with information about the spreadsheets available to the user 
        """ 
        sheets = self.gd_client.GetSpreadsheetsFeed() 
        return map(lambda e: (e.title.text , e.id.text.rsplit('/', 
1)[1]),sheets.entry) 
    def listWorkSheets(self): 
        wks = self.gd_client.GetWorksheetsFeed(key=self.key) 
        return map(lambda e: (e.title.text , e.id.text.rsplit('/', 1)[1]),wks.entry) 
    def getRows(self): 
        return self.gd_client.GetListFeed(key=self.key,wksht_id=self.wksht_id).entry 
    def insertRow(self,row_data): 
        return 
self.gd_client.InsertRow(row_data,key=self.key,wksht_id=self.wksht_id) 

DRAFT Version:  2007-06-07 15:24:53  Copyright Raymond Yee. 



Pro (Web 2.0) Mashup Development:  Remixing data and services (forthcoming book from Apress).   
(http://blog.mashupguide.net) 

24

    def deleteRow(self,entry): 
        return self.gd_client.DeleteRow(entry) 
    def deleteAllRows(self): 
        entrylist = self.getRows() 
        for entry in entrylist: 
            self.deleteRow(entry) 
 
 
AMAZON_LIST_ID = "1U5EXVPVS3WP5" 
AMAZON_ACCESS_KEY_ID = "[AMAZON_ACCESS_KEY_ID]" 
 
class amazonWishList: 
 
    def __init__(self,listID=AMAZON_LIST_ID,amazonAccessKeyId=AMAZON_ACCESS_KEY_ID): 
        self.listID = listID 
        self.amazonAccessKeyId = amazonAccessKeyId 
        self.getListInfo() 
         
 
    def getListInfo(self): 
 
        aws_url = 
"http://ecs.amazonaws.com/onca/xml?Service=AWSECommerceService&Version=2007-05-
14&AWSAccessKeyId=%s&Operation=ListLookup&ListType=WishList&ListId=%s" % 
(self.amazonAccessKeyId, self.listID) 
        f = openAnything.openAnything(aws_url) 
        dom = minidom.parse(f) 
        self.title = getText(dom.getElementsByTagName('ListName')[0].childNodes) 
        self.listLength = 
int(getText(dom.getElementsByTagName('TotalItems')[0].childNodes)) 
        self.TotalPages = 
int(getText(dom.getElementsByTagName('TotalPages')[0].childNodes)) 
        return(self.title, self.listLength, self.TotalPages) 
 
    def ListItems(self): 
        """ 
        a generator for the items on the Amazon list 
        """ 
 
        import itertools 
        for pageNum in xrange(1,self.TotalPages):   
            aws_url = 
"http://ecs.amazonaws.com/onca/xml?Service=AWSECommerceService&Version=2007-05-
14&AWSAccessKeyId=%s&Operation=ListLookup&ListType=WishList&ListId=%s&ResponseGroup=
ListItems,Medium&ProductPage=%s" % (self.amazonAccessKeyId,self.listID,pageNum) 
            f = openAnything.openAnything(aws_url) 
            dom = minidom.parse(f) 
            f.close() 
            items = dom.getElementsByTagName('ListItem') 
            for c in xrange(0,10): 
                yield items[c] 
                 

DRAFT Version:  2007-06-07 15:24:53  Copyright Raymond Yee. 



Pro (Web 2.0) Mashup Development:  Remixing data and services (forthcoming book from Apress).   
(http://blog.mashupguide.net) 

25

    def parseListItem(self,item): 
        from string import join 
        from decimal import Decimal 
 
        itemDict = {}     
         
        itemDict['asin'] = getText(item.getElementsByTagName('ASIN')[0].childNodes) 
        itemDict['dateadded'] = 
getText(item.getElementsByTagName('DateAdded')[0].childNodes) 
        itemDict['detailpageurl'] = 
getText(item.getElementsByTagName('DetailPageURL')[0].childNodes) 
 
        # join the text of all the author nodes, if they exist 
        authorNodes = item.getElementsByTagName('Author') 
        # blank not allowed 
        itemDict['author'] = join(map(lambda e: getText(e.childNodes), authorNodes), 
", ") or ' ' 
 
        itemDict['quantitydesired'] = 
getText(item.getElementsByTagName('QuantityDesired')[0].childNodes) 
         
        titleNodes = item.getElementsByTagName('Title') 
        # blank title not allowed 
        itemDict['title'] = join(map(lambda e: getText(e.childNodes), titleNodes), 
", ") or ' ' 
         
        # to fix -- not all things have a LowestNewPrice         
        itemDict['price'] = 
str(Decimal(getText(item.getElementsByTagName('LowestNewPrice')[0].getElementsByTagN
ame('Amount')[0].childNodes))/100) or ' ' 
 
        return itemDict     
 
 
def main(): 
     
    gs = GSheetForAmazonList(user=GoogleUser,pwd=GooglePW) 
    gs.setKey(GSheet_KEY) 
    gs.setWkshtId(GWrkSh_ID) 
 
    aWishList = 
amazonWishList(listID=AMAZON_LIST_ID,amazonAccessKeyId=AMAZON_ACCESS_KEY_ID) 
    items = aWishList.ListItems() 
    print "deleting all rows..." 
    gs.deleteAllRows() 
    for item in itemsd: 
        try: 
            h = aWishList.parseListItem(item) 
            print h['asin'] 
        except Exception, e: 
            print "Error %s parsing %s" % (e, item.toprettyxml("  ")) 
        try: 

DRAFT Version:  2007-06-07 15:24:53  Copyright Raymond Yee. 



Pro (Web 2.0) Mashup Development:  Remixing data and services (forthcoming book from Apress).   
(http://blog.mashupguide.net) 

26

            gs.insertRow(h) 
        except Exception, e: 
            print "Error %s inserting %s" % (e, h['asin']) 
 
 
if __name__ == '__main__': 
    main() 
 

 
Things to note about this code: 

 * The GSheetForAmazonList class provides convenience methods for the Google GData 
library. 

 * The error handling is essential since not all wishlist items necessarily have all the 
pieces of data requested.  It's important for the code to keep moving even if data is 
missing. 

    * At least in the Python GData interface to Google Spreadsheets, you can't insert blank 
cells. 

 * The amazonWishList.ListItems is a Python generator, which creates an iterator to 
parcel out the Amazon items one at a time.  See 
http://www.ibm.com/developerworks/library/l-pycon.html?t=gr,lnxw16=PyIntro for a 
tutorial on Python generators. 

Variation: Amazon WishList to Microsoft Excel Via COM 
With code to access the Amazon wishlist in hand, you can COM programming to generate an 
Excel spreadsheet with the same information.  To learn more about the details about how to 
do so, consult Chapter 12 of Python Programming on Win3218 
 
from amazonListToGSheet import GS_HEADER, amazonWishList, AMAZON_LIST_ID, 
AMAZON_ACCESS_KEY_ID, GS_KEYS  
from win32com.client import Dispatch 
 
# fire up the Excel application 
xlApp = Dispatch("Excel.Application") 
xlApp.Visible = 1 
xlApp.Workbooks.Add() 
 
# write the headers 
col = 1 
 
def insertRow(sheet,row,data,keys): 
    col = 1 
    for k in keys: 
        sheet.Cells(row,col).Value = data[k] 
        col += 1 

                                                 
18   http://www.oreilly.com/catalog/pythonwin32/chapter/ch12.html 

DRAFT Version:  2007-06-07 15:24:53  Copyright Raymond Yee. 



Pro (Web 2.0) Mashup Development:  Remixing data and services (forthcoming book from Apress).   
(http://blog.mashupguide.net) 

27

 
for h in GS_HEADER: 
    xlApp.ActiveSheet.Cells(1,col).Value = h 
    col +=1 
# now loop through the amazon wishlist 
 
aWishList = 
amazonWishList(listID=AMAZON_LIST_ID,amazonAccessKeyId=AMAZON_ACCESS_KEY_ID) 
items = aWishList.ListItems() 
 
row = 2 
for item in items: 
    try: 
        p = aWishList.parseListItem(item) 
        print p['asin'] 
    except Exception, e: 
        print "Error %s parsing %s" % (e, item.toprettyxml("  ")) 
    try: 
        insertRow(xlApp.ActiveSheet,row,p,GS_KEYS) 
        row += 1 
    except Exception, e: 
        print "Error %s inserting %s" % (e, p['asin']) 

Zoho APIs 
Zoho (http://zoho.com) has been generating a good amount of attention for its online office 
suite, which is the most comprehensiveone available right now.19  Among its offerings are 
Zoho Writer (a word processor), Zoho Sheet (a spreadsheet), and Zoho Show.   

There are currently APIs for Writer, Sheet, and Show: 
http://writer.zoho.com/public/help/zohoapi/fullpage 

Currently, the APIs do not talk deeply to pieces of documents.  There are storage APIs 
that let you upload and download documents.  To access pieces, you have to use the 
techniques shown in the rest of this chapter to parse and write documents.  (For instance: 
http://writer.zoho.com/public/help/userView.AddWorkbook/noband)  I suspect that API calls 
to access parts of documents will follow at some point in the future. 

Summary 
 * There's huge potential for mashups with both desktop and web-based office suites, 

though there are barriers  

 * Tthere's a lot of work that has gone into the file formats ODF and OOXML but it's hard 
to figure out how to make sense of some basic aspects of the file formats. 

                                                 
19    http://www.technologyreview.com/Biztech/18816/ provides a useful analysis of the Zoho vs 
Google Docs battle and how they compare. 

DRAFT Version:  2007-06-07 15:24:53  Copyright Raymond Yee. 



Pro (Web 2.0) Mashup Development:  Remixing data and services (forthcoming book from Apress).   
(http://blog.mashupguide.net) 

DRAFT Version:  2007-06-07 15:24:53  Copyright Raymond Yee. 

28

 * The Google Spreadsheet API is fairly easy to use; Google has spent a fair amount of 
effort not only building the underlying REST protocol but also writing API kits in 
various languages, and providing usable documentation. 


	Mashup Scenarios for Office Suites
	World of Document Markup
	OpenDocument Format (ODF)
	The ODF Spec: does it answer the question of a minimal instance?
	Trial and Error Search for an ODF Minimal Instance
	So what to do?
	The single XML document format – how to generate an instance?
	Resolving the Validity/Minimal Instance Issues 
	Some Other Useful References

	API kits for working with ODF
	odfpy
	OpenDocumentPHP

	Leveraging OO.o to generate ODF
	Ecma Office Open XML (OOXML)
	Viewers/Validators for OOXML

	Comparing ODF and OOXML 
	Online Office Suites
	Usage Scenarios for Programmable Online Spreadsheets
	Google Spreadsheet API
	PHP
	Python


	Mashup: Amazon wishlist and Google Spreadsheet Mashup
	Accessing the Wishlist through the Amazon ECS web service
	Python Code to Mashup Amazon and Google Spreadsheet
	Variation: Amazon WishList to Microsoft Excel Via COM

	Zoho APIs
	Summary

