
CHAPTER 15

Accessing Online Calendars
and Event Aggregators
Online calendars will move from being merely trendy to virtually indispensable as our
lives move increasingly to the network. Calendaring (scheduling appointments and
coordinating calendars) is something most of us can relate to since we all have
appointments that we make and keep.

As we use electronic calendars, there is a good chance that we will have more than
one calendar to synchronize—people use different calendars or work with people with
other calendars, no matter how much Microsoft, Apple, Google, or Yahoo! might want
everyone to use its calendar alone. A lot of this calendaring activity has moved to not
only digital form but specifically to a networked digital form. In addition to the old
calendars, new generations of online calendars are coming into existence—that’s the
focus of this chapter.

Online calendars exist in the context of other digital calendars: desktop calendars
such as Microsoft Outlook and Apple iCal and calendars on handheld devices such as
the Palm calendar. Much work has been done on synchronizing these calendars. Of
course, calendar synchronization has been operant for a while, but these approaches
(specialized conduits/SyncML1) have been more opaque than the APIs now available.2
Today’s online calendars with APIs generally make synchronization easier.

In addition to the proliferation of online calendars, event aggregation sites such as
Upcoming.yahoo.com and Eventful.com are starting to create a marketplace of event
data. They are focused on public events, whereas online calendars have as their focal
point individuals and private events. These worlds intersect, of course, because
individual users often track the public events they attend on their individual calendars.

When it comes to public events, the point of focus is different, depending on
whether you are an attendee (and consumer of information about the event) or are a
publisher or purveyor of event information. As an individual viewer, you want to
browse, aggregate, and select events, typically from multiple sources. You might be
conducting these tasks in a social context. What are your friends interested in? What do
they invite you to, and vice versa? Your friends might know what you care about and
direct you to events you’ll find interesting. As a publisher of events, you probably want
to disseminate information about the event as widely as possible. There are technical
mechanisms for supporting the interchange of data between publishers of event data and
consumers of event data, which is one of the subjects of this chapter.

This chapter shows the first steps to take in learning this subject:

 * It covers what data you can get in and out of calendars without programming
using iCalendar and various XML feeds as examples.

 * It covers how to program individual calendars using Google Calendar and
30boxes.com, how to move data from a source of event data into calendars, and
how to write event information to event aggregators such as
Upcoming.yahoo.com and Eventful.com.

1. SyncML is now known as Open Mobile Alliance Data Synchronization and Device Management.

2. http://www.coldsync.org/description.html

Google Calendar
Google Calendar is fast increasing in popularity among online calendars.3 Not only does
it have some clever features, but it is highly remixable with its extensive API and use of
feeds and excellent data import and export functionality.

Let’s talk about how to use Google Calendar as a user first and then look at how to
program it.

Setting Up Google Calendar As an End User
Log in to your Google account here:
http://calendar.google.com

Google Calendar has some noteworthy features:

 * In addition to creating a main calendar, you can create secondary calendars and
subscribe to calendars belonging to others. Because you can turn the visibility of
any given calendar on and off, you get a composite view of the events of all your
visible calendars. (Think of each calendar as a layer.) On the sidebar, you get a
list of your own calendars and the other calendars to which you are subscribing.

 * You can search for public events and look for public calendars.4 You can also
make your events publicly searchable right within your own calendar—tightly
coupling the process of publishing and consuming events.

 * You can set the visibility of your calendars to one of three options: make it
publicly available to everyone; show only the Free/Busy information availability,
that is, show only whether a block of time is occupied; or set it to the Do Not
Share with Everyone level, in which case the calendar is visible only to those
people with whom you explicitly share your calendar.5

 * To delete a calendar, you have to click the Manage Calendars link.

 * There is Gmail/Google Calendar integration: “Gmail users can send event
invitations directly from their Gmail accounts without accessing Google
Calendar.”6

 * There is currently no direct offline access to Google Calendar.7

3. http://www.techcrunch.com/2007/01/04/online-calendar-wiars/

4. http://www.google.com/calendar/render?mode=gallery&cat=POPULAR

5. http://www.google.com/support/calendar/bin/answer.py?answer=34577&hl=en

Some Usage Patterns for Google Calendar
To show some use case scenarios for Google Calendar, here I list some of the calendars
that I have set up and the reasons why:

 * A strictly personal calendar for events. I have set this calendar to Do Not Share
with Everyone.

 * A family and friends calendar for my closest friends. I also use the Do Not Share
with Everyone setting here but then add the e-mail addresses of individual friends
and family members.

 * A calendar called Raymond Yee’s Public Events to list events that I plan to be at
and don’t mind the world knowing about. I use the Share All Information on This
Calendar with Everyone setting.

 * A calendar called Mashup Guide Demo Calendar, a public calendar I’ll use in this
chapter to demonstrate how to program Google Calendar.

When I create a new Google calendar, I consider the following factors:

 * Who I want to share the calendar with (that is, is the calendar for myself, a
specific group of people, or for the whole world?)

 * The broad topic of that calendar

Sharing Calendars
There are calendar addresses that are visible to others if the calendar is public. There are
three formats:8

 * HTML

 * iCalendar (also known colloquially as iCal)9

 * XML (specifically, Atom feed)

To illustrate the different feed formats, I’ll use a publicly available calendar that I
created: the Mashup Guide Demo Calendar, whose sharing status I have set to Share All
Information on This Calendar with Everyone.
6. http://www.google.com/support/calendar/bin/answer.py?answer=53231&topic=8556

7. http://www.google.com/support/calendar/bin/answer.py?answer=61527&topic=8556

8. http://www.google.com/support/calendar/bin/answer.py?answer=34578&hl=en and
http://www.google.com/support/calendar/bin/answer.py?answer=37104&ctx=sibling

9. http://en.wikipedia.org/wiki/ICalendar

Every Google calendar has an identifier. The user ID for a user’s main calendar is
the user’s e-mail address. For other calendars, the user ID is a more complicated e-mail
address. For instance, the user ID for the Mashup Guide Demo Calendar is as follows:
9imfjk71chkcs66t1i436je0s0%40group.calendar.google.com

You can get the HTML feed for a calendar here:
http://www.google.com/calendar/embed?src={userID}

For example:

http://www.google.com/calendar/embed?src=9imfjk71chkcs66t1i436je0s0%40group.cale
ndar. ~CCC
google.com

Associated with the iCalendar and XML feeds are two parameters (visibility and
projection) that I’ll explain in greater detail in a moment. For instance, you can access
an iCalendar feed here:
http://www.google.com/calendar/ical/{userID}/{visibility}/{projection}.ics

For example:

http://www.google.com/calendar/ical/9imfjk71chkcs66t1i436je0s0%40group.calendar.
~CCC
google.com/public/full.ics

and for example:

http://www.google.com/calendar/ical/9imfjk71chkcs66t1i436je0s0%40group.calendar.
~CCC
google.com/public/basic.ics

The Atom feeds are found here:
http://www.google.com/calendar/feeds/{userID}/{visibility}/{projection}

For example:

http://www.google.com/calendar/feeds/9imfjk71chkcs66t1i436je0s0%40group.calendar
. ~CCC
google.com/public/basic

If your calendar is not public, there are still private addresses that other applications
can use to access the calendar. Note that you can reset these URLs too in case you want
to reset access.10

Exploring the Feed Formats from Google Calendar
The Google Calendar API is built upon GData, the RESTful protocol based on the Atom
Publishing Protocol (APP) combined with the Google-specific extensions introduced in
Chapter 7.11 There are API kits for various languages, including PHP and Python (as
well as Java, .NET, and JavaScript).12

10. http://www.google.com/support/calendar/bin/answer.py?answer=34576&hl=en

11. http://code.google.com/apis/calendar/overview.html

12. http://code.google.com/apis/calendar/developers_guide_protocol.html

Before I cover how to programmatically interact with the Google Calendar, I’ll first
cover what you can do by changing documents. It’s useful to take a look at specific
instances of iCalendar and the XML feeds.

iCalendar/iCal
iCalendar is a dominant standard for the exchange of calendar data. Based on the older
vCalendar standard, iCalendar is sometimes referred to as iCal, which might be

confused with the name of the Apple calendaring program of the same name. The
iCalendar standard is supported in a wide range of products.

The official documentation for iCalendar is RFC 2445:
http://tools.ietf.org/html/rfc2445

Some other allied standards are built around RFC 2445, but they are beyond the
scope of this book:

 * iCalendar Transport-Independent Interoperability Protocol (iTIP) Scheduling
Events, BusyTime, To-dos and Journal Entries (RFC 2446) lays out how calendar
servers can exchange calendaring events.13

 * iCalendar Message-Based Interoperability Protocol (iMIP) (RFC 2447) covers the
exchange of calendaring data by e-mail.14

See the Wikipedia article on iCalendar for a list of the wide range of products that
support iCalendar.15 Calendaring standards are complex. I recommend a good overview
of how standards relate.16

The structure of an iCalendar file is not based on XML like many of the data
exchange formats covered in this book. There have been attempts to cast the iCalendar
data model into XML (such as xCal17), but none has reached the level of wide adoption
that iCalendar has.

iCalendar has many features, but there are a few basic things to know about it:

 * iCalendar has a top-level object: VCALENDAR.

 * There are subobjects, including VEVENT, VTODO, VJOURNAL, and VFREEBUSY.

I’ll focus mostly on the VEVENT object here—though VFREEBUSY is generated in
Google Calendar when one uses the “Share only my free/busy information (hide
details)” mode.

This is a simple example of iCalendar data (with one VEVENT), quoted from RFC
2445:18

13. http://tools.ietf.org/html/rfc2446

14. http://tools.ietf.org/html/rfc2447

15. http://en.wikipedia.org/wiki/ICalendar

16. http://www.calconnect.org/calendaringstandards.shtml

17. http://en.wikipedia.org/wiki/XCal

18. http://tools.ietf.org/html/rfc2445#section-4.4

BEGIN:VCALENDAR
VERSION:2.0
PRODID:-//hacksw/handcal//NONSGML v1.0//EN
BEGIN:VEVENT
DTSTART:19970714T170000Z
DTEND:19970715T035959Z
SUMMARY:Bastille Day Party
END:VEVENT
END:VCALENDAR

To see a more complicated instance of an iCalendar document, you can use Google
Calendar via this:

curl
"http://www.google.com/calendar/ical/9imfjk71chkcs66t1i436je0s0%40group.~CCC
calendar.google.com/public/basic.ics"

This gets the iCalendar rendition of my public Mashup Guide Demo Calendar, a
version of which is as follows:

BEGIN:VCALENDAR
PRODID:-//Google Inc//Google Calendar 70.9054//EN
VERSION:2.0
CALSCALE:GREGORIAN
METHOD:PUBLISH
X-WR-CALNAME:Mashup Guide Demo Calendar
X-WR-TIMEZONE:America/Los_Angeles
X-WR-CALDESC:a Google Calendar to support mashupguide.net
BEGIN:VTIMEZONE
TZID:America/Los_Angeles
X-LIC-LOCATION:America/Los_Angeles
BEGIN:DAYLIGHT
TZOFFSETFROM:-0800
TZOFFSETTO:-0700
TZNAME:PDT
DTSTART:19700308T020000
RRULE:FREQ=YEARLY;BYMONTH=3;BYDAY=2SU
END:DAYLIGHT
BEGIN:STANDARD
TZOFFSETFROM:-0700
TZOFFSETTO:-0800
TZNAME:PST
DTSTART:19701101T020000
RRULE:FREQ=YEARLY;BYMONTH=11;BYDAY=1SU
END:STANDARD
END:VTIMEZONE
BEGIN:VEVENT
DTSTART;TZID=America/Los_Angeles:20070507T130000
DTEND;TZID=America/Los_Angeles:20070507T140000
DTSTAMP:20070510T155641Z
ORGANIZER;CN=Mashup Guide Demo
Calendar:MAILTO:9imfjk71chkcs66t1i436je0s0@~CCC
group.calendar.google.com
UID:vk021kggr20ba2jhc3vjg6p8ek@google.com
CLASS:PUBLIC
CREATED:20070510T021623Z
DESCRIPTION:
LAST-MODIFIED:20070510T021623Z
LOCATION:110 South Hall\, UC Berkeley
SEQUENCE:0
STATUS:CONFIRMED
SUMMARY:Mixing and Remixing Information Class Open House
TRANSP:OPAQUE
END:VEVENT

BEGIN:VEVENT
DTSTART;TZID=America/Los_Angeles:20070411T123000
DTEND;TZID=America/Los_Angeles:20070411T140000
DTSTAMP:20070510T155641Z
ORGANIZER;CN=Mashup Guide Demo
Calendar:MAILTO:9imfjk71chkcs66t1i436je0s0@~CCC
group.calendar.google.com
UID:d9btebsfd121lhqc4arhj9727s@google.com
CLASS:PUBLIC
CREATED:20070411T144226Z
DESCRIPTION:
LAST-MODIFIED:20070411T144226Z
LOCATION:
SEQUENCE:0
STATUS:CONFIRMED
SUMMARY:Day 22
TRANSP:OPAQUE
END:VEVENT
END:VCALENDAR

This chapter does not cover the ins and outs of the iCalendar format. I recommend
the following ways to learn more about iCalendar:

 * Read the “Guide to Internet Calendaring”
(http://www.ietf.org/rfc/rfc3283.txt).

 * There are many standards
(http://www.calconnect.org/calendaringstandards.shtml), but keep especially
RFC 2445 in mind.

 * Know that since iCalendar is rich in features, these features are not evenly
implemented among calendars, servers, or libraries that claim to work with
iCalendar.

 * The community is wrestling with a lot of subtleties. That’s why you have
organizations such as CalConnect making recommendations about handling
recurring events and time zones (http://calconnect.org/recommendations.shtml).

 * Interoperability among iCalendar implementations remains a challenge,19 so don’t
be surprised if you run into problems using one system to interpret an iCalendar
file produced by another system.

 * Have some good programming libraries on hand to parse and create iCalendar
(although it’s hard to know for sure the quality of any given iCalendar library).

 * Note that work is underway to update the standards:
http://www.ietf.org/html.charters/calsify-charter.html.

In working with iCalendar, I’ve found the iCalendar Validator
(http://severinghaus.org/projects/icv/), based on the iCal4j library
(http://ical4j.sourceforge.net/), to be useful. You can use it to validate the iCalendar
feed for the Mashup Guide Demo Calendar:

http://severinghaus.org/projects/icv/?url=http%3A%2F%2Fwww.google.com%2Fcalendar
%2Fi~CCC

cal%2F9imfjk71chkcs66t1i436je0s0%2540group.calendar.google.com%2Fpublic%2Fbasic.
ics

19. http://www.calconnect.org/ioptesting.shtml and http://www.calconnect.org/interop/

uc%20berkeley%20interop%20testing.pdf

Google Calendar Atom Data
Now compare Google Calendar data formatted as an Atom XML feed, which you can
get using this:

curl
http://www.google.com/calendar/feeds/9imfjk71chkcs66t1i436je0s0%40group.~CCC
calendar.google.com/public/basic

This will return a feed that looks something like this:

<?xml version="1.0" encoding="UTF-8"?>
<feed xmlns="http://www.w3.org/2005/Atom" xmlns:openSearch="http://a9.com/-
/spec/~CCC
opensearchrss/1.0/"
 xmlns:gd="http://schemas.google.com/g/2005"
 xmlns:gCal="http://schemas.google.com/gCal/2005">

<id>http://www.google.com/calendar/feeds/9imfjk71chkcs66t1i436je0s0%40group.cale
ndar.~CCCgoogle.com/public/basic</id>
 <updated>2007-05-10T02:16:23.000Z</updated>
 <category scheme="http://schemas.google.com/g/2005#kind"
 term="http://schemas.google.com/g/2005#event"/>
 <title type="text">Mashup Guide Demo Calendar</title>
 <subtitle type="text">a Google Calendar to support mashupguide.net</subtitle>
 <link rel="http://schemas.google.com/g/2005#feed" type="application/atom+xml"
 href="http://www.google.com/calendar/feeds/9imfjk71chkcs66t1i436je0s0%40
group.calendar.google.com/public/basic"/>
 <link rel="self" type="application/atom+xml"
 href="http://www.google.com/calendar/feeds/9imfjk71chkcs66t1i436je0s0%40
group.calendar.google.com/public/basic?max-results=25"/>
 <author>
 <name>Raymond Yee</name>
 <email>raymond.yee@gmail.com</email>
 </author>
 <generator version="1.0" uri="http://www.google.com/calendar">Google Calendar
</generator>
 <openSearch:totalResults>2</openSearch:totalResults>
 <openSearch:startIndex>1</openSearch:startIndex>
 <openSearch:itemsPerPage>25</openSearch:itemsPerPage>
 <gd:where valueString=""/>
 <gCal:timezone value="America/Los_Angeles"/>
 <entry>

<id>http://www.google.com/calendar/feeds/9imfjk71chkcs66t1i436je0s0%40group.~C
CCcalendar.google.com/public/basic/vk021kggr20ba2jhc3vjg6p8ek</id>
 <published>2007-05-10T02:16:23.000Z</published>
 <updated>2007-05-10T02:16:23.000Z</updated>

 <category scheme="http://schemas.google.com/g/2005#kind"
 term="http://schemas.google.com/g/2005#event"/>
 <title type="text">Mixing and Remixing Information Class Open House</title>
 <summary type="html">When: Mon May 7, 2007 1pm to 2pm&nbsp;
PDT

Where: 110 South Hall, UC Berkeley
Event Status:
confirmed</summary>
 <content type="text">When: Mon May 7, 2007 1pm to 2pm&nbsp;
PDT

Where: 110 South Hall, UC Berkeley
Event Status:
confirmed</content>
 <link rel="alternate" type="text/html" ~CCC

href="http://www.google.com/calendar/event?eid=dmswMjFrZ2dyMjBiYTJqaGMzd~CCC
mpnNnA4ZWsgOWltZmprNzFjaGtjczY2dDFpNDM2amUwczBAZw" title="alternate"/>
 <link rel="self" type="application/atom+xml" ~CCC

href="http://www.google.com/calendar/feeds/9imfjk71chkcs66t1i436je0s0%40~CCC
group.calendar.google.com/public/basic/vk021kggr20ba2jhc3vjg6p8ek"/>
 <author>
 <name>Mashup Guide Demo Calendar</name>
 </author>
 <gCal:sendEventNotifications value="false"/>
 </entry>
 <entry>

<id>http://www.google.com/calendar/feeds/9imfjk71chkcs66t1i436je0s0%40group.cale
ndar.~CCC
google.com/public/basic/d9btebsfd121lhqc4arhj9727s</id>
 <published>2007-04-11T14:42:26.000Z</published>
 <updated>2007-04-11T14:42:26.000Z</updated>
 <category scheme="http://schemas.google.com/g/2005#kind"
 term="http://schemas.google.com/g/2005#event"/>
 <title type="text">Day 22</title>
 <summary type="html">When: Wed Apr 11, 2007 12:30pm to 2pm&nbsp;
PDT

Event Status: confirmed</summary>
 <content type="text">When: Wed Apr 11, 2007 12:30pm to 2pm&nbsp;
PDT

Event Status: confirmed</content>
 <link rel="alternate" type="text/html" ~CCC

href="http://www.google.com/calendar/event?eid=ZDlidGVic2ZkMTIxbGhxYzRhcmh~CC
C
qOTcyN3MgOWltZmprNzFjaGtjczY2dDFpNDM2amUwczBAZw" title="alternate"/>
 <link rel="self" type="application/atom+xml" ~CCC

href="http://www.google.com/calendar/feeds/9imfjk71chkcs66t1i436je0s0%40~CCC
group.calendar.google.com/public/basic/d9btebsfd121lhqc4arhj9727s"/>
 <author>
 <name>Mashup Guide Demo Calendar</name>
 </author>
 <gCal:sendEventNotifications value="false"/>
 </entry>
</feed>

Note the following about this data:

 * The feed is expressed in Atom format (which you learned about in Chapter 4).

 * It uses common GData extension elements,20 OpenSearch, and Google Calendar
extensions.21

Using the GData-Based Calendar API Directly
In this section, I will lead you through the basics of programming the Google Calendar
API. Since I won’t cover all the details of the API, I refer you to “Google Calendar Data
API Developer’s Guide: Protocol” documentation as an excellent place to start. You’ll
learn how to set up some calendars and access the right URLs for various feeds.22

As with most APIs, you can take two basic approaches: you can work directly with
the protocol, which in this case is based on the GData protocol that underlies many
Google APIs, including that for Blogger (see Chapter 7), or you can use a language-
specific API kit. Here I’ll show you both approaches. Although the latter approach is
often more practical, I’ll use this explication of the Calendar API as a chance to review
GData (and the concepts of REST in general). To work with the specific language-
specific libraries, consult the documentation here:
http://code.google.com/apis/gdata/clientlibs.html

Later, I’ll give a quick rundown on how to use the PHP and Python API kits. You
can get started with the documentation for the Calendar API here:
http://code.google.com/apis/calendar/developers_guide_protocol.html

The reference for the API is here:
http://code.google.com/apis/calendar/reference.html

The Google Calendar API is based on GData, which in turn is based on APP with
Google-specific extensions. APP is a strictly REST protocol; remember, that means
resources are represented as Atom feeds, and you use standard HTTP methods (GET,
POST, PUT, and DELETE) to read, update, create, and delete elements. Here I’ll show you
some of the key feeds and how to use them. Before diving into doing so, I’ll first show
you how to obtain an authentication token, which you need in order to make full use of
these feeds (that is, beyond issuing GET requests for public feeds).
20. http://code.google.com/apis/gdata/elements.html

21. http://code.google.com/apis/calendar/reference.html#Elements

22. http://code.google.com/apis/calendar/developers_guide_protocol.html

Obtaining an Authentication Token
One of the two authentication methods available to you is documented here:
http://code.google.com/apis/gdata/auth.html

I’ll show you how to use the ClientLogin technique here. To make authorized access
to the API, you will need an authentication token, which you can obtain by making an
HTTP POST request (using the application/x-www-form-urlencoded content type) to here:
https://www.google.com/accounts/ClientLogin

with a body that contains the following parameters:

Email: Your Google e-mail (for example, raymond.yee@gmail.com)

Password: Your Google password

source: A string of the form companyName-applicationName-versionID to identify
your program (for example, mashupguide.net-Chap15-v1)

service: The name of the Google service, which in this case is cl

Using the example parameters listed here, you can package the authentication
request with the following curl invocation:

curl -v -X POST -d "Passwd={passwd}&source=mashupguide.net-Chap15-
v1&Email=~CCC
raymond.yee%40gmail.com&service=cl" https://www.google.com/accounts/ClientLogin

If this call succeeds, you will get in the body of the response an Auth token (of the
form Auth=[AUTH-TOKEN]). Retain the Auth token for your next calls. You will embed the
authentication token in your calls by including the following HTTP request header:
Authorization: GoogleLogin auth=[AUTH-TOKEN]

Tip In curl, you do so with the -H option: -H "Authorization: GoogleLogin auth=[AUTH-
TOKEN]".

On occasion, you will need to handle HTTP 302 redirects from the API. That is,
instead of fulfilling a request, the Google Calendar API sends you a response with a
redirect URL appended with the new query parameter gessionid. You then reissue your
request to this new URL.

Tip For HTTP GET, use the -L option in curl to automatically handle a redirect.

Feeds Available from Google Calendar
There are three feed types: calendar (for managing calendars), event (for events
contained by calendars), and comment (for representing comments attached to events).
Each of the feeds is qualified by two parameters: visibility and projection. After I
describe visibility and projection, I’ll list the various feeds and show how you can
access them via curl. For more details about the feeds, consult this page:
http://code.google.com/apis/calendar/reference.html#Feeds

visibility and projection
There are two parameters for “specifying” the representation of feeds: visibility and
projection. The visibility parameter can be one of public, private, or private-
[magicCookie]. Feeds that are public do not require authorization and are always read-

only; public feeds are inaccessible if the user has turned off sharing for the calendar.
Feeds that are private do require authentication to use and are potentially writable in
addition to being readable (that is, read/write). Finally, feeds that have a visibility of
private-[magicCookie] are read-only and enable private information to be read without
authorization. (The magicCookie encapsulates authentication information.)

The projection values are listed here:
http://code.google.com/apis/calendar/reference.html#Projection

They include the following:

 * full (potentially read/write).

 * free-busy (always read-only). This feed shows minimal information about events
but does include data about the duration of events (in other words, the <gd:when>
element).

 * basic (always read-only). The basic projection produces Atom feeds without any
extension elements; the <atom:summary> and <atom:content> elements contain
HTML descriptions with embedded data about the events.

Calendar Feeds
There are three types of calendar feeds—meta-feed, allcalendars, and owncalendars—
which I’ll cover in turn.

meta-feed
The private and read-only meta-feed contains an <entry> element for each calendar to
which the user has access. This list includes both calendars that are owned by the user
and ones to which the user is subscribed. You can access the feed at the following URL:
http://www.google.com/calendar/feeds/default

by using this:

curl -L -X GET -H "Authorization: GoogleLogin auth=[AUTH-TOKEN]" ~CCC
http://www.google.com/calendar/feeds/default

Let’s look at an instance of an <entry>. Here is my own default calendar:

<entry>

<id>http://www.google.com/calendar/feeds/default/raymond.yee%40gmail.com</id>
 <published>2007-10-20T18:46:01.839Z</published>
 <updated>2007-10-19T23:18:04.000Z</updated>
 <title type="text">Raymond Yee</title>
 <link rel="alternate" type="application/atom+xml" ~CCC

href="http://www.google.com/calendar/feeds/raymond.yee%40gmail.com/~CCC
private/full"/>
 <link rel="http://schemas.google.com/acl/2007#accessControlList" ~CCC
 type="application/atom+xml"~CCC

href="http://www.google.com/calendar/feeds/raymond.yee%40gmail.com/acl/~CCC

full"/>
 <link rel="self" type="application/atom+xml"

href="http://www.google.com/calendar/feeds/default/raymond.yee%40gmail.com"/>
 <author>
 <name>Raymond Yee</name>
 <email>raymond.yee@gmail.com</email>
 </author>
 <gCal:timezone value="America/Los_Angeles"/>
 <gCal:hidden value="false"/>
 <gCal:color value="#2952A3"/>
 <gCal:selected value="true"/>
 <gCal:accesslevel value="owner"/>
 </entry>

Note the three link elements in the entry for the meta-feed:

 * rel="alternate" whose href is as follows:
http://www.google.com/calendar/feeds/raymond.yee%40gmail.com/private/full

 If you were to do an authenticated GET on this feed, you’d see that this is an event
feed containing all the events for the default calendar.

 Note how the URL of this feed maps to the following form:

http://www.google.com/calendar/feeds/{userID}/{privacy}/{projection}

 Here the user ID is raymond.yee%40gmail.com, visibility is private, and
projection is full.

 * rel="http://schemas.google.com/acl/2007#accessControlList". The following
feed gives you the access control list for the given calendar.

http://www.google.com/calendar/feeds/raymond.yee%40gmail.com/acl/full

 For this calendar, there is a single entry (I’m the only person who has permissions
associated with my default calendar):

<entry>
<id>http://www.google.com/calendar/feeds/raymond.yee%40gmail.com/acl/~CCC
full/user%3Araymond.yee%40gmail.com</id>
 <updated>2007-10-20T23:14:47.000Z</updated>
 <category scheme="http://schemas.google.com/g/2005#kind"
 term="http://schemas.google.com/acl/2007#accessRule"/>
 <title type="text">owner</title>
 <content type="text"/>
 <link rel="self" type="application/atom+xml" ~CCC

href="http://www.google.com/calendar/feeds/raymond.yee%40gmail.com/acl/~CCC
full/user%3Araymond.yee%40gmail.com"/>
 <link rel="edit" type="application/atom+xml" ~CCC

href="http://www.google.com/calendar/feeds/raymond.yee%40gmail.com/acl/~CCC
full/user%3Araymond.yee%40gmail.com"/>

 <author>
 <name>Raymond Yee</name>
 <email>raymond.yee@gmail.com</email>
 </author>
 <gAcl:scope type="user" value="raymond.yee@gmail.com"/>
 <gAcl:role value="http://schemas.google.com/gCal/2005#owner"/>
 </entry>

 * rel="self"
http://www.google.com/calendar/feeds/default/raymond.yee%40gmail.com

 This feed returns one entry for the default calendar—instead of all the calendars
to which the user (raymond.yee@gmail.com) has access.

allcalendars
The allcalendars feed is a private, potentially read/write feed for controlling
subscriptions and settings (such as the display color) for calendars. Inserting or deleting
entries to the allcalendars feed is tantamount to subscribing or unsubscribing to existing
calendars. You can update personalization settings for your calendars: the color,
whether it is hidden, and whether it is selected. You can’t create or delete calendars by
manipulating the allcalendars feed; for those actions, you need to use the owncalendars
feed.

The URL for the allcalendars feed is here:
http://www.google.com/calendar/feeds/default/allcalendars/full

which you can access with this:

curl -L -X GET -H "Authorization: GoogleLogin auth=[AUTH-TOKEN]" ~CCC
http://www.google.com/calendar/feeds/default/allcalendars/full

Note You might wonder about the difference between meta-feed and allcalendars since both of them
list all the calendars to which a user has access. The allcalendars feed with a projection value of full
is read/write, while the meta-feed is read-only. If you try to access the allcalendars feed with a
projection value of basic (to get something akin to the meta-feed), you’ll get an “unknown visibility
found” error.

I’ll now walk you through how to manipulate the allcalendars feed to add and delete
a subscription to the Phases of the Moon calendar, one of Google’s public calendars,
which is available here:

http://www.google.com/calendar/embed?src=ht3jlfaac5lfd6263ulfh4tql8%40group.cale
ndar.~CCC
google.com

Note the user ID of the calendar:
ht3jlfaac5lfd6263ulfh4tql8%40group.calendar.google.com

To subscribe to the calendar, create a file (called phases_moon_entry.xml) with the
minimal entry element needed to be the body of the post as follows:

<?xml version='1.0' encoding='UTF-8'?>
<atom:entry xmlns:atom="http://www.w3.org/2005/Atom">
 <atom:id>ht3jlfaac5lfd6263ulfh4tql8%40group.calendar.google.com</atom:id>
</atom:entry>

Next, issue an HTTP POST request:

curl -v -X POST --data-binary "@phases_of_moon_entry.xml" -H "Content-Type:
~CCC
application/atom+xml " -H "Authorization: GoogleLogin auth=[AUTH-TOKEN]"
~CCC
http://www.google.com/calendar/feeds/default/allcalendars/full

As mentioned earlier, there’s a good chance you’ll get a 302 HTTP response code to
this call:

http://www.google.com/calendar/feeds/default/allcalendars/full?gsessionid=~CC
C
{gessionid}

For example:

http://www.google.com/calendar/feeds/default/allcalendars/full?gsessionid=~CC
C
GUWxgPh61GQ

If you do get a 302 HTTP response code, reissue the call to the new URL with this:

curl -v -X POST --data-binary "@phases_of_moon_entry.xml" -H "Content-Type:
~CCC
application/atom+xml " -H "Authorization: GoogleLogin auth=[AUTH-TOKEN]"
~CCC
http://www.google.com/calendar/feeds/default/allcalendars/full?gsessionid=~CC
C
{gessionid}

If the request to subscribe to the Phases of the Moon calendar is successful, you’ll
get a 201 HTTP response code to indicate a created calendar, along with a response
body akin to this:

 <entry>
<id>http://www.google.com/calendar/feeds/default/allcalendars/full/~CCC
ht3jlfaac5lfd6263ulfh4tql8%40group.calendar.google.com</id>
 <published>2007-10-20T23:55:52.611Z</published>
 <updated>2007-10-14T07:19:30.000Z</updated>
 <title type="text">Phases of the Moon</title>
 <summary type="text"/>
 <link rel="alternate" type="application/atom+xml" ~CCC

href="http://www.google.com/calendar/feeds/ht3jlfaac5lfd6263ulfh4tql8%40~CCC
group.calendar.google.com/private/full"/>
 <link rel="self" type="application/atom+xml"~CCC

href="http://www.google.com/calendar/feeds/default/allcalendars/full/~CCC
ht3jlfaac5lfd6263ulfh4tql8%40group.calendar.google.com"/>
 <link rel="edit" type="application/atom+xml" ~CCC

href="http://www.google.com/calendar/feeds/default/allcalendars/full/~CCC
ht3jlfaac5lfd6263ulfh4tql8%40group.calendar.google.com"/>
 <author>
 <name>Phases of the Moon</name>
 </author>
 <gCal:timezone value="Etc/GMT"/>
 <gCal:hidden value="false"/>
 <gCal:color value="#7A367A"/>
 <gCal:selected value="false"/>
 <gCal:accesslevel value="read"/>
 <gd:where valueString=""/>
 </entry>

You can then unsubscribe to the Phases of the Moon calendar with the following
HTTP DELETE request:

curl -v -X DELETE -H "Authorization: GoogleLogin auth=[AUTH-TOKEN]" ~CCC
http://www.google.com/calendar/feeds/default/allcalendars/full/ht3jlfaac5lfd6263
ulfh~CCC
4tql8%40group.calendar.google.com?gsessionid={gsessionid}

owncalendars
The owncalendars feeds hold data about the calendars that a user owns. This feed is
conceptually similar to the allcalendars feed, with one important difference. Instead of
subscribing and unsubscribing to calendars, actions on the owncalendars feed are
equivalent to creating and destroying calendars. The syntax for manipulating the
owncalendars feed is similar to that for the allcallendars feed. For instance, to retrieve
the feed, do a GET to this:
http://www.google.com/calendar/feeds/default/owncalendars/full

For example:

curl -v -L -X GET -H "Authorization: GoogleLogin auth=[AUTH-TOKEN]" ~CCC
http://www.google.com/calendar/feeds/default/owncalendars/full

To create a new book-writing calendar, create a file entitled
book_writing_calendar_entry.xml:

<?xml version="1.0" encoding="UTF-8"?>
<entry xmlns='http://www.w3.org/2005/Atom'
 xmlns:gd='http://schemas.google.com/g/2005'
 xmlns:gCal='http://schemas.google.com/gCal/2005'>
 <title type='text'>Book Writing Schedule</title>
 <summary type='text'>A calendar to track when I write my book.</summary>
 <gCal:timezone value='America/Los_Angeles'></gCal:timezone>
 <gCal:hidden value='false'></gCal:hidden>
 <gCal:color value='#2952A3'></gCal:color>
 <gd:where rel='' label='' valueString='Berkeley, CA'></gd:where>
</entry>

and do the following POST (after handling the HTTP 302 redirect):

curl -v -X POST --data-binary "@book_writing_calendar_entry.xml" -H "Content-
Type: ~CCC
application/atom+xml " -H "Authorization: GoogleLogin auth=[AUTH-TOKEN]"
~CCC
http://www.google.com/calendar/feeds/default/owncalendars/full?gsessionid=~CC
C
{gsession-id}

Furthermore, you can then update an existing calendar by issuing the appropriate
PUT:
http://www.google.com/calendar/feeds/default/owncalendars/full/{userID}

And you can delete an existing calendar by using DELETE:
http://www.google.com/calendar/feeds/default/owncalendars/full/{userID}

Event Feeds
Now that you have studied the three types of calendar feeds, you’ll look at how to use
the event feeds. (I won’t cover comment feeds in this book.) Specifically, let’s look at
the simple case of retrieving all the events from a given feed for which you have write
privileges. To work with a given calendar, you need to know its user ID. In the instance
of my own calendars (the Mashup Guide Demo calendar), the user ID is as follows:
9imfjk71chkcs66t1i436je0s0%40group.calendar.google.com

The syntax of the URL to the feed of the events is as follows:
http://www.google.com/calendar/feeds/{userID}/{privacy}/{projection}

Specifically, you can use a privacy value of public and a projection value of full
since the calendar is a public one to arrive here:
http://www.google.com/calendar/feeds/{userID}/public/full

For example:

http://www.google.com/calendar/feeds/9imfjk71chkcs66t1i436je0s0%40group.calendar
.~CCC
google.com/public/full

which you can confirm is a URL to a feed of all the events on the calendar. To add an
event, you need to send an HTTP POST request (with the proper authentication) here:
http://www.google.com/calendar/feeds/{userID}/private/full

For example:

http://www.google.com/calendar/feeds/9imfjk71chkcs66t1i436je0s0%40group.calendar
.~CCC
google.com/private/full

That is, you create a file by the name of project_showcase_event.xml with the
following content:

<?xml version='1.0' encoding='UTF-8'?>
<entry xmlns='http://www.w3.org/2005/Atom'
 xmlns:gd='http://schemas.google.com/g/2005'>

 <category scheme='http://schemas.google.com/g/2005#kind'
 term='http://schemas.google.com/g/2005#event'></category>
 <title type='text'>Project Showcase</title>
 <content type='text'>A chance for the class to show off their
projects</content>
 <gd:where valueString='110 South Hall'></gd:where>
 <gd:when startTime="2008-05-12T13:00:00.000-07:00"
 endTime="2008-05-12T14:00:00.000-07:00"/>
</entry>

and issue the following request:

curl -v -X POST --data-binary "@project_showcase_event.xml" -H "Content-Type:
~CCC
application/atom+xml " -H "Authorization: GoogleLogin auth=[AUTH-TOKEN]"
~CCC
http://www.google.com/calendar/feeds/{userID}/private/full?gsessionid={gsessioni
d}

where the gsessionid is the one given in the 302 redirect to create an event on the
Mashup Guide Demo calendar.

With an analogous procedure to how you subscribe or unsubscribe to calendars in
the allcalendars feed or create calendars through the owncalendars feed, you can create
and delete events through the events feed.

Using the PHP API Kit for Google Calendar
Working directly with the GData interface to Google Calendar gives you a lot of
flexibility at the cost of tedium. Now we’ll turn to studying how to use two of the API
wrappers for Google Calendar. In the next section, I’ll show you how to use the Python
API kit. Here, we’ll study the PHP wrapper.

The PHP API kit is documented here:
http://code.google.com/apis/calendar/developers_guide_php.html

The PHP library for accessing Google Calendar is part of the Zend Google Data
Client Library, which, in turn, is available as part of the Zend Framework or as a
separate download. Note that the library is developed by Zend and works with PHP
5.1.4 or newer. You can download the Zend Framework from this location:
http://framework.zend.com/

You can read about how to use the Zend Framework to access Google Calendar
here:
http://framework.zend.com/manual/en/zend.gdata.calendar.html

You install the Zend framework by copying the files to a directory of your choice. I
set up the Zend Framework in this location:
http://examples.mashupguide.net/lib/ZendFramework/

I’ll now illustrate the basics of using this library through two code snippets. Both
use the ClientLogin form of authorization. The first example retrieves a list of a user’s
calendars:

<?php

require_once 'Zend/Loader.php';
Zend_Loader::loadClass('Zend_Gdata');
Zend_Loader::loadClass('Zend_Gdata_ClientLogin');
Zend_Loader::loadClass('Zend_Gdata_Calendar');

function getGDataClient($user, $pass)
{
 $service = Zend_Gdata_Calendar::AUTH_SERVICE_NAME;

 $client = Zend_Gdata_ClientLogin::getHttpClient($user, $pass, $service);
 return $client;
}

function printCalendarList($client)
{
 $gdataCal = new Zend_Gdata_Calendar($client);
 $calFeed = $gdataCal->getCalendarListFeed();
 echo $calFeed->title->text . "\n";
 echo "\n";
 foreach ($calFeed as $calendar) {
 echo $calendar->title->text, "\n";
 }
}

$USER = "[USER]";
$PASSWORD = "[PASSWORD]";

$client = getGDataClient($USER, $PASSWORD);
printCalendarList($client);

?>

The second code sample retrieves a list of events for a given calendar and prints
basic elements for a given event: its ID, title, content, and details about the “where” and
“when” of the event:

<?php

require_once 'Zend/Loader.php';
Zend_Loader::loadClass('Zend_Gdata');
Zend_Loader::loadClass('Zend_Gdata_ClientLogin');
Zend_Loader::loadClass('Zend_Gdata_Calendar');

function getGDataClient($user, $pass)
{
 $service = Zend_Gdata_Calendar::AUTH_SERVICE_NAME;

 $client = Zend_Gdata_ClientLogin::getHttpClient($user, $pass, $service);
 return $client;
}

function printEventsForCalendar($client, $userID)
{

 $gdataCal = new Zend_Gdata_Calendar($client);

 $query = $gdataCal->newEventQuery();
 $query->setUser($userID);
 $query->setVisibility('private');
 $query->setProjection('full');

 $eventFeed = $gdataCal->getCalendarEventFeed($query);

 echo $eventFeed->title->text . "\n";
 echo "\n";
 foreach ($eventFeed as $event) {
 echo $event->title->text, "\t", $event->id->text, "\n" ;
 echo $event->content->text, "\n";
 foreach ($event->where as $where) {
 echo $where, "\n";
 }
 foreach ($event->when as $when) {
 echo "Starts: " . $when->startTime . "\n";
 echo "Ends: " . $when->endTime . "\n";
 }

 # check for recurring events
 if ($recurrence = $event->getRecurrence()) {
 echo "recurrence: ", $recurrence, "\n";
 }

 print "\n";
 }
}

$USER = "[USER]";
$PASSWORD = "[PASSWORD]";

userID for the Mashup Guide Demo calendar
$userID = "9imfjk71chkcs66t1i436je0s0%40group.calendar.google.com";

$client = getGDataClient($USER, $PASSWORD);
printEventsForCalendar($client, $userID);

?>

Later in the chapter, you will see how to use the PHP Google Calendar library to
create events.

Using the Python API Kit for Google Calendar
You can find the documentation on the Python API kit here:
http://code.google.com/apis/calendar/developers_guide_python.html

To install the library, you can download it from here:
http://code.google.com/p/gdata-python-client/downloads/list

Or you can access the access the Subversion repository for the project here:
http://gdata-python-client.googlecode.com/svn/trunk/

Note The following code depends on the ElementTree library, which ships with Python 2.5 and
newer. You can find instructions for downloading ElementTree at
http://effbot.org/zone/element-index.htm.

Here’s some Python code to demonstrate how to list all of your calendars and to list
the events on a specific calendar:

"""
Chapter 15: simple facade for Python Google Calendar library
"""
__author__ = 'raymond.yee@gmail.com (Raymond Yee)'

EMAIL = '[USER]'
PASSWORD = '[PASSWORD]'

try:
 from xml.etree import ElementTree
except ImportError:
 from elementtree import ElementTree

import gdata.calendar.service
import gdata.calendar
import atom

class MyGCal:
 def __init__(self):
 self.client = gdata.calendar.service.CalendarService()
 self.client.email = EMAIL
 self.client.password = PASSWORD
 self.client.source = 'GCalendarUtil-raymondyee.net-v1.0'
 self.client.ProgrammaticLogin()
 def listAllCalendars(self):
 feed = self.client.GetAllCalendarsFeed()
 print 'Printing allcalendars: %s' % feed.title.text
 for calendar in feed.entry:
 print calendar.title.text
 def listOwnCalendars(self):
 feed = self.client.GetOwnCalendarsFeed()
 print 'Printing owncalendars: %s' % feed.title.text
 for calendar in feed.entry:
 print calendar.title.text
 def listEventsOnCalendar(self,userID='default'):
 """
 list all events on the calendar with userID
 """
 query = gdata.calendar.service.CalendarEventQuery(userID, 'private',
'full')

 feed = self.client.CalendarQuery(query)
 for event in feed.entry:
 print event.title.text, event.id.text, event.content.text
 for where in event.where:
 print where.value_string
 for when in event.when:
 print when.start_time, when.end_time
 if event.recurrence:
 print "recurrence:", event.recurrence.text

if __name__ == '__main__':
 gc = MyGCal()
 gc.listAllCalendars()
 # userID for Mashup Guide Demo calendar
 userID = '9imfjk71chkcs66t1i436je0s0%40group.calendar.google.com'
 gc.listEventsOnCalendar(userID)

30boxes.com
30boxes.com is another online calendar service, one that has won some rave reviews.23
It has very noteworthy features, in addition to an API, making it worthwhile to describe
it here.
23. http://30boxes.com/press

For information about the 30boxes.com API, go here:

 * http://30boxes.com/developers

 * http://30boxes.com/api/

An End User Tutorial
Before programming 30boxes.com, it’s useful of course to view it as an end user:

 1. Sign up for an account if you don’t already have one:
http://30boxes.com/signup

 2. Once you have an account, log into it:

http://30boxes.com/login

 3. You can learn how to do various tasks at 30boxes.com by consulting the help
section (http://30boxes.com/help).

One noteworthy feature from an end user’s point of view is that, in terms of sharing,
it seems that all calendars are completely private by default. You can add buddies and
set options as to how much a given buddy can see:

 * Buddies can see your entire calendar unless you mark an event as private.

 * Buddies can see events that are marked with a certain tag.

 * Buddies can see only the stuff on the buddy page.

30boxes.com API
The main documentation is at this location:
http://30boxes.com/api/

You have to get a key here:
http://30boxes.com/api/api.php?method=getKeyForUser

In this section, we’ll exercise the API. Please substitute your own [APIKEY] and
[AUTHTOKEN]. You can do HTTP GET requests on the following URLs:

 * test.ping:24
http://30boxes.com/api/api.php?method=test.Ping&apiKey={APIKEY}

24. http://30boxes.com/api/#t

 * user.FindByEmail:
http://30boxes.com/api/api.php?method=user.FindByEmail&apiKey={APIKEY}&email=yee
@~CCC
berkeley.edu

 * user.Authorize: Many methods require authorization, which then yields an
authorization token. In this example, I use a small picture of me as the application
icon.25 When calling user.FindByEmail, I also drop the optional returnURL
argument:

25. http://farm1.static.flickr.com/4/5530475_48f80eece8_s.jpg

http://30boxes.com/api/api.php?method=user.Authorize&apiKey={APIKEY}~CCC&appl
icationName={application-name}&applicationLogoUrl={url}

 For example:

http://30boxes.com/api/api.php?method=user.Authorize&apiKey={APIKEY}~CCC&appl
icationName=Raymond+Yee&applicationLogoUrl=http%3A%2F%2Ffarm1.static.~CCCflic
kr.com%2F4~CCC%2F5530475_48f80eece8_s.jpg
 You will get an authentication token, which I show here as {AUTHTOKEN}.

 * user.GetAllInfo:

http://30boxes.com/api/api.php?method=user.GetAllInfo&apiKey={APIKEY}~CCC&aut
horizedUserToken={AUTHTOKEN}

 to which you will get something like this:

<?xml version="1.0" encoding="utf-8"?>
<rsp stat="ok">
 <user>
 <id>40756</id>
 <facebookId>1229336</facebookId>
 <firstName>Raymond</firstName>
 <lastName>Yee</lastName>
 <avatar>http://farm1.static.flickr.com/4/5530475_48f80eece8_s.jpg</avatar>
 <status>sweeping stuff under the carpet while he writes.</status>
 <bio/>

 <dateFormat>MM-DD-YYYY</dateFormat>
 <timeZone>US/Pacific</timeZone>
 <createDate>2006-03-17</createDate>
 <startDay>0</startDay>
 <use24HourClock>0</use24HourClock>
 <feed>
 <name>Raymond - MySpace Blog</name>
 <url>http://blog.myspace.com/blog/rss.cfm?friendID=82943257</url>
 </feed>
 <email>
 <address>yee@berkeley.edu</address>
 <primary>1</primary>
 </email>
 <email>
 <address>raymond.yee@gmail.com</address>
 <primary>0</primary>
 </email>
 <otherContact>
 <type>Yahoo</type>
 <value>rdhyee</value>
 </otherContact>
 <otherContact>
 <type>Personal Site</type>
 <value>http://hypotyposis.net/blog</value>
 </otherContact>

 </user>
</rsp>

 * events.Get:

http://30boxes.com/api/api.php?method=events.Get&apiKey={APIKEY}~CCC&authoriz
edUserToken={AUTHTOKEN}&start=2007-01-01&end=2007-09-01

 to which you will get something like this:

<?xml version="1.0" encoding="utf-8"?>
<rsp stat="ok">
 <eventList>
 <userId>40756</userId>
 <listStart>2007-01-01</listStart>
 <listEnd>2007-06-30</listEnd>
 <event>
 <id>1767437</id>
 <summary>Y!RB Brain Jam: A CHI2007 Sampler</summary>
 <notes>[....]</notes>
 <start>2007-04-27 14:00:00</start>
 <end>2007-04-27 14:00:00</end>
 <lastUpdate>2007-04-11 15:08:58</lastUpdate>
 <allDayEvent>0</allDayEvent>
 <repeatType>no</repeatType>
 <repeatEndDate>0000-00-00</repeatEndDate>
 <repeatSkipDates/>
 <repeatICal/>
 <reminder>-1</reminder>

 <tags/>
 <externalUID>http://upcoming.org/event/172254/</externalUID>
 <privacy>shared</privacy>
 <invitation>
 <isInvitation>0</isInvitation>
 </invitation>
 </event>
[....]
 </eventList>

</rsp>

Note The end parameter cannot be more than 180 days after start.

 * events.GetDisplayList (to get an expanded and sorted list of events):

http://30boxes.com/api/api.php?method=events.GetDisplayList&apiKey={APIKEY}~CC
C&authorizedUserToken={AUTHTOKEN}&start=2007-01-01&end=2007-09-01
 * todos.Get:

http://30boxes.com/api/api.php?method=todos.Get&apiKey={APIKEY}&authorizedUser~
CCCToken={AUTHTOKEN}
 * todos.Add:

http://30boxes.com/api/api.php?method=todos.Add&apiKey={APIKEY}&authorizedUser~
CCCToken={AUTHTOKEN}&text=Eat+more+veggies&externalUID=123456x
 * todos.Update:

http://30boxes.com/api/api.php?method=todos.Update&apiKey={APIKEY}&authorized~C
CC
UserToken={AUTHTOKEN}&text=Eat+more+veggies+and+fruit&todoId=123110&externalUID=
~CCC

123456x

 * todos.Delete:

http://30boxes.com/api/api.php?method=todos.Delete&apiKey={APIKEY}&authorized~C
CCUserToken={AUTHTOKEN}&text=Eat+more+veggies+and+fruit&todoId=123110
 * events.AddByOneBox:

http://30boxes.com/api/api.php?method=events.AddByOneBox&apiKey={APIKEY}~CCC&
authorizedUserToken={AUTHTOKEN}&event=eat+some+sushi+tomorrow+at+7pm

Note You can find a Python API wrapper for 30boxes.com at
http://trentm.com/projects/thirtyboxes/.

Event Aggregators
Google Calendar and 30boxes.com are examples of online calendars meant to allow
individuals and small groups of people to coordinate their appointments.
Complementing such calendars are event aggregators that gather and list events, many
of which are public events. In the following sections, I’ll cover two event aggregators
that are programmable and hence mashable: Upcoming.yahoo.com and Eventful.com.

Upcoming.yahoo.com
The URL for Upcoming.yahoo.com is as follows:
http://upcoming.yahoo.com/

The URL for a specific event is as follows:
http://upcoming.yahoo.com/event/{event-id}/

For example, the following is the URL for CHI2007:
http://upcoming.yahoo.com/event/76140/

Feeds from Search Results
Upcoming.yahoo.com makes much of its data available through RSS 2.0 feeds. Let’s
consider an example. To look for events with the keyword Bach in the San Francisco
Bay Area, you can use the following search:

http://upcoming.yahoo.com/search/?type=Events&rt=1&q=bach&loc=Berkeley%2C+Califo
rnia~CCC
%2C+United+States

In general, the URL for searching events is as follows:
http://upcoming.yahoo.com/search/?type=Events&rt=1&q={q}&loc={location}&sort={so
rt}

where you can set sort to w (to sort by popularity), r (by relevance), and p (by recently
added).

The previous search gives you HTML. You can also get feeds out of the search
results as either RSS 2.0 or iCalendar. The RSS 2.0 feed includes Dublin Core data, uses
the xCal extension (http://en.wikipedia.org/wiki/XCal) to encode calendaring
information, and includes latitude and longitude data encoded with the Compact W3C
Basic Geo encoding (see Chapter 13 for details on this encoding):

http://upcoming.yahoo.com/syndicate/v2/search_all/?q=bach&loc=Berkeley%2C+Califo
rnia~CCC
%2C+United+States&rt=1

Take a look at a specific instance of an event:

 <geo:lat>37.7774</geo:lat>
 <geo:long>-122.4198</geo:long>
[....]
 <dc:date>2007-03-18T17:59:58-07:00</dc:date>
 <xCal:summary>San Francisco Symphony: Bach and Handel</xCal:summary>

 <xCal:dtstart>2008-04-05T20:00:00Z</xCal:dtstart>
 <xCal:dtend></xCal:dtend>
 <xCal:location>http://upcoming.yahoo.com/venue/17246/</xCal:location>
 <xCal:x-calconnect-venue>
 <xCal:x-calconnect-venue-id>http://upcoming.yahoo.com/venue/17246/
</xCal:x-calconnect-venue-id>
 <xCal:adr>
 <xCal:x-calconnect-venue-name>Davies Symphony Hall</xCal:x-calconnect-
venue-~CCC
name>
 <xCal:x-calconnect-street>201 Van Ness Avenue</xCal:x-calconnect-street>
 <xCal:x-calconnect-city>San Francisco Bay Area</xCal:x-calconnect-city>
 <xCal:x-calconnect-region>California</xCal:x-calconnect-region>
 <xCal:x-calconnect-postalcode>94102</xCal:x-calconnect-postalcode>
 <xCal:x-calconnect-country>United States</xCal:x-calconnect-country>
 </xCal:adr>
 <xCal:url type='Venue Website'>http://upcoming.yahoo.com/venue/17246/
</xCal:url>
 <xCal:x-calconnect-tel></xCal:x-calconnect-tel>
 </xCal:x-calconnect-venue>

You can get an iCalendar version of the results, which you can subscribe to using an
iCalendar-cognizant calendar (for example, Apple iCal, Google Calendar, or Microsoft
Outlook 2007):

webcal://upcoming.yahoo.com/calendar/v2/search_all/?q=bach&loc=Berkeley%2C+~CC
C
California%2C+United+States&rt=1

Note the use of the webcal URI scheme (http://en.wikipedia.org/wiki/Webcal). The
webcal scheme tells the recipient to subscribe to the feed—to track updates—rather than
just doing a one-time import of the iCalendar feed. (Note that you can replace webcal
with http to get the contents of the iCalendar feed.)

http://upcoming.yahoo.com/calendar/v2/search_all/?q=bach&loc=Berkeley%2C+Califor
nia%~CCC
2C+United+States&rt=1

What can you do with these feeds coming from Upcoming.yahoo.com? One
example is to generate KML out of the RSS 2.0 feeds, which already contain
geolocations for the events. In fact, you can use Yahoo! Pipes for this very task:
http://pipes.yahoo.com/pipes/pipe.info?_id=GlqEg8WA3BGZNw9ELO2fWQ

This pipe takes as input the parameters that can be used to generate an upcoming
RSS 2.0 feed from Upcoming.yahoo.com (q, loc, and sort) and uses the Location
Extractor operator to extract the geoRSS elements from the feed.

Note You can extend the pipe to encompass the other search options at Upcoming.yahoo.com, such
as date ranges or categories.

You can run the pipe for Bach events close to Berkeley, California, sorted by
relevance:

http://pipes.yahoo.com/pipes/pipe.info?q=Bach&loc=Berkeley%2C+CA&sort=r&_cmd=Run
+~CCC
Pipe&_id=GlqEg8WA3BGZNw9ELO2fWQ&_run=1

Note that running this pipe generates a Yahoo! map showing the events contained in
the feed. In addition to the RSS 2.0 feed version here:

http://pipes.yahoo.com/pipes/pipe.run?_id=GlqEg8WA3BGZNw9ELO2fWQ&_render=rss&loc
=~CCC
Berkeley%2C+CA&q=Bach&sort=r

which isn’t that interesting (since Upcoming.yahoo.com already generates an RSS 2.0
feed), you can get a KML version of this feed (by changing the _render parameter to
kml):

http://pipes.yahoo.com/pipes/pipe.run?_id=GlqEg8WA3BGZNw9ELO2fWQ&_render=kml&loc
=~CCC
Berkeley%2C+CA&q=Bach&sort=r

From Chapter 13, you learned how to sort KML feeds on Google Maps:

http://maps.google.com/maps?q=http:%2F%2Fpipes.yahoo.com%2Fpipes%2Fpipe.run%3F_i
d%3~CCC
DGlqEg8WA3BGZNw9ELO2fWQ%26_render%3Dkml%26loc%3DBerkeley%252C%2BCA%26q%3DBach%26
~CCC
sort%3Dr&ie=UTF8

Read-Only Parts of the API
Let’s now turn to the Upcoming.yahoo.com API. You can find the documentation for
the API here:
http://upcoming.yahoo.com/services/api/

You can generate a key to use for the API here:
http://upcoming.yahoo.com/services/api/keygen.php

The upcoming API is structured to be similar (but not identical) in detail to the
Flickr REST API. The authentication is simpler and less sophisticated, but you’ll see the
method parameter and api_key (similar naming). The base URL for the API is as follows:
http://upcoming.yahooapis.com/services/rest/

Like the Flickr API, you need a method (event.search), an api_key, and other
parameters for the given method, which are documented here:
http://upcoming.yahoo.com/services/api/event.search.php

There is a wide range of options (such as date range and precise location, in addition
to paging parameters such as per_page and page). In this case, we’re using the
search_text and location parameters to put together an HTTP GET request:

http://upcoming.yahooapis.com/services/rest/?api_key={api_key}&method=event.sear
ch&~CCC

search_text=bach&location=Berkeley%@C+California

to which you get back a series of event elements:

<event id="166104" name="San Francisco Symphony: Bach and Handel"
 description="Christophers makes music of three centuries ago sound
~CCC
contemporary and utterly vital. Here, he conducts Baroque blockbusters, music of
~CCC
dazzling color and invention."
 start_date="2008-04-05" end_date="" start_time="20:00:00" end_time=""
 personal="0"
 selfpromotion="0"
metro_id="2;1311;1403;1849;1934;2122;2289;2466;2638;2962"
 venue_id="17246"
 user_id="59509" category_id="1" date_posted="2007-03-18 10:59:58"
 watchlist_count="6"

url="http://www.sfsymphony.org/templates/event_info.asp?nodeid=250&~CCC
eventid=1188"
 distance="10.91" distance_units="miles" latitude="37.7774"
 longitude="-122.4198"
 geocoding_precision="address" geocoding_ambiguous="0"
 venue_name="Davies Symphony Hall"
 venue_address="201 Van Ness Avenue" venue_city="San Francisco Bay Area"
 venue_state_name="California" venue_state_code="ca" venue_state_id="5"
 venue_country_name="United States" venue_country_code="us"
 venue_country_id="1"
 venue_zip="94102"/>

Note what you get back. In addition to the “what” and “when” of the event, there is
also specific geocoding. You can make a map (for example, converting this KML and
displaying it on a map), which I showed earlier in the case of using the RSS 2.0 feed.

What else can do you with the API without authentication?

 * You can use event.getInfo to retrieve information about public events given its
event_id. For example, you can use the WWW2008 Conference
(http://upcoming.yahoo.com/event/205875) here:

http://upcoming.yahooapis.com/services/rest/?method=event.getInfo&api_key=~CC
C
{api-key}&event_id=205875

 to get the following:

<?xml version="1.0" encoding="UTF-8"?>
<rsp stat="ok" version="1.0">
 <event id="205875" name="WWW 2008 (17th International World Wide Web
~CCCConference)"
 tags="www,web,www2008,ydn"
 description=""The World Wide Web Conference is a global event bringing
~CCCtogether key researchers, innovators, decision-makers, technologists,
~CCCbusinesses, and standards bodies working to shape the Web. Since its
inception ~CCCin 1994, the WWW conference has become the annual venue for

international ~CCCdiscussions and debate on the future evolution of the
Web.""
 start_date="2008-04-21" end_date="2008-04-25" start_time="" end_time=""
 personal="0"
 selfpromotion="0" metro_id="420" venue_id="33275" user_id="18772"
 category_id="5"
 url="http://www2008.org/" date_posted="2007-06-12" latitude=""
~CCClongitude=""
 geocoding_precision="" geocoding_ambiguous=""
 venue_name="Beijing International Conference Center"
 venue_address="No.8 Beichendong Road Chaoyang District"
~CCCvenue_city="Beijing"
 venue_state_name="Beijing" venue_state_code="bj" venue_state_id="171"
 venue_country_name="China"
 venue_country_code="cn" venue_country_id="44" venue_zip="" venue_url=""
 venue_phone="+86-10-64910248"/>
</rsp>

 * You can use metro.getForLatLon to retrieve a venue for a given latitude and
longitude. Let’s use the latitude and longitude for a building on the UC Berkeley
campus in Berkeley, California:

37.869111,-122.260634

 to formulate the following request:

http://upcoming.yahooapis.com/services/rest/?method=metro.getForLatLon&~CCC
api_key={api-key}&latitude=37.869111&longitude=-122.260634

 which returns this:

<?xml version="1.0" encoding="UTF-8"?>
<rsp stat="ok" version="1.0">
 <metro id="2" name="San Francisco" code="sf" state_id="5"
state_name="California"
 state_code="ca"
 country_id="1" country_name="United States" country_code="us"/>
</rsp>

Parts of the API That Require Authentication
You will need to supply a callback URL for token-based authorization if you need that.
How do you authenticate? The documentation is here:
http://upcoming.yahoo.com/services/api/token_auth.php

Getting the Token
The documentation tells you how to set up a callback URL for web-based applications. I
consider this a simpler case in which you don’t set any callback URL and manually read
off a token. That is, load up this in your browser, and read the frob:
http://upcoming.yahoo.com/services/auth/?api_key={api-key}

Then get a token with an auth.getToken call:

http://upcoming.yahooapis.com/services/rest/?method=auth.getToken&api_key={api-
key}&~CCC
frob={frob}

to which you will get the following:

<?xml version="1.0" encoding="UTF-8"?>
<rsp stat="ok" version="1.0">
<token token="[TOKEN]" user_id="[USER_ID]" user_username="[USERNAME]"
 user_name="[FULLNAME]" />
</rsp>

Adding an Event with the API
Let’s use the API to add an event with the event.add method, which is documented here:
http://upcoming.yahoo.com/services/api/event.add.php

To add an event, issue an HTTP POST request with the following parameters:

 * api_key (required)

 * token (required)

 * name (required)

 * venue_id (numeric, required)

 * category_id (numeric, required)

 * start_date (YYYY-MM-DD, required)

 * end_date (YYYY-MM-DD, optional)

 * start_time (HH:MM:SS, optional)

 * end_time (HH:MM:SS, optional)

 * description (optional)

 * url (optional)

 * personal (1=visible to friends only or 0=public, optional, defaults to 0)

 * selfpromotion (1=self-promotion or 0=normal, optional, defaults to 0)

For an example, I added the JCDL 2008 conference to Upcoming.yahoo.com:
http://www.jcdl2008.org/

The best way is to practice using the user interface of Upcoming.yahoo.com to help
you pick out the venue ID and category ID:
http://upcoming.yahoo.com/event/add/

The location (found at http://www.jcdl2008.org/location.html) is the Omni
William Penn Hotel in Pittsburgh, Pennsylvania. When you type the name of the hotel
and its city into Upcoming.yahoo.com, it locates a venue. But how do you get the ID?
You can use the API method venue.search
(http://upcoming.yahoo.com/services/api/venue.search.php):

http://upcoming.yahooapis.com/services/rest/?api_key={api_key}&method=venue.sear
ch&~CCCsearch_text=Omni+William+Penn+Hotel&location=Pittsburgh%@C+PA
to which you get the following:

<?xml version="1.0" encoding="UTF-8"?>
<rsp stat="ok" version="1.0">
 <venue id="56189" name="Omni William Penn Hotel" address="530 William Penn
Place"
 city="Pittsburgh" state="Pennsylvania" zip="" country="United States"
 url="http://www.omnihotels.com/FindAHotel/PittsburghWilliamPenn.aspx"
 description=""
 user_id="120115" metro_id="77" private="0" distance="0.14"
 distance_units="miles"
 latitude="40.4406" longitude="-79.997" geocoding_precision="address"
 geocoding_ambiguous="0"
 state_code="pa" state_id="39" country_code="us" country_id="1"/>
</rsp>

The conclusion is that the venue ID is 56189.
The next question is, how do you get the category ID? You can use the

category.getList method
(http://upcoming.yahoo.com/services/api/category.getList.php):
http://upcoming.yahooapis.com/services/rest/?api_key={api_key}&method=category.g
etList

to get:

<?xml version="1.0" encoding="UTF-8"?>
<rsp stat="ok" version="1.0">
<category id="1" name="Music" description="Concerts, nightlife, raves" />
<category id="2" name="Performing/Visual Arts" description="Theatre, dance,
opera, ~CCC
exhibitions" />
<category id="3" name="Media" description="Film, book readings" />
<category id="4" name="Social" description="Rallies, gatherings, user groups" />
<category id="5" name="Education" description="Lectures, workshops" />
<category id="6" name="Commercial" description="Conventions, expos, flea
markets" />
<category id="7" name="Festivals" description="Big events, often multiple days"
/>
<category id="8" name="Sports" description="Sporting events, recreation" />
<category id="10" name="Other" description="Who knows?" />
<category id="11" name="Comedy" description="Stand-up, improv, comic theatre" />
<category id="12" name="Politics" description="Rallies, fundraisers, meetings"
/>
<category id="13" name="Family" description="Family/kid-oriented music, shows,
theatre" />
</rsp>

For this event, let’s pick Education (category 5).
Finally, I grab the description from here:

http://www.jcdl2008.org/index.html

Since 2001, the Joint Conference on Digital Libraries has served as the
major international forum focused on digital libraries and associated
technical, practical, and social issues . . .

Four hundred attendees are expected for the five days of events including a
day of cutting edge tutorials; 3 days of papers, panels, and keynotes; and a
day of research workshops.

OK—let’s piece together a curl invocation that will create a new event in
Upcoming.yahoo.com. Here is a Python program to generate the curl command:

import urllib

parameters for creating the upcoming event
method = 'event.add'
api_key = '[API-KEY]'
token = '[TOKEN]'
name = 'Joint Conference on Digital Libraries (JCDL) 2008'
venue_id = '56189'
category_id = '5' #education
start_date = '2008-06-15'
end_date = '2008-06-20'
description = """
[DESCRIPTION]
"""
url = 'http://www.jcdl2008.org/'
params = {'api_key': api_key, 'method':method, 'token':token, 'name':name,
~CCC
'venue_id':venue_id, 'category_id': category_id, ~CCC
 'start_date':start_date, 'end_date':end_date, 'description':
description, ~CCC
 'url': url}

command = 'curl -v -X POST -d "%s" %s' % (urllib.urlencode(params),
"http://upcoming.~CCCyahooapis.com/services/rest/")
print command

The resulting curl command is as follows:

curl -v -X POST -d
"venue_id=56189&name=Joint+Conference+on+Digital+Libraries+~CCC
%28JCDL%29+2008&end_date=2008-06-
20&url=http%3A%2F%2Fwww.jcdl2008.org%2F&description~CCC{description}&start_da
te=2008-06-15&token=[TOKEN]&api_key=[API-
KEY]&method=event.add~CCC&category_id=5"
http://upcoming.yahooapis.com/services/rest/

Remember that [TOKEN] is the authentication token received from the auth.getToken
call issued earlier. The resulting event in Upcoming.yahoo.com is as follows:
http://upcoming.yahoo.com/event/300826/

API Kits for Upcoming.yahoo.com
To find API kits for Upcoming.yahoo.com, you can start with the links here:
http://upcoming.yahoo.com/help/w/Language-specific_Libraries

Although there does not seem to be any publicly available PHP kits at this point,
you can find one for Python here:
http://code.google.com/p/upcoming-python-api/

Since this project currently has no downloads, you get the source via Subversion:
svn checkout http://upcoming-python-api.googlecode.com/svn/trunk/ upcoming-
python-api

The following code searches for events with the Bach keyword that are within five
miles of Berkeley, California:

UPCOMING_API_KEY = '[UPCOMING_API_KEY]'

#from upcoming_api import Upcoming
from upcoming_api import UpcomingCached
import string

#upcoming = Upcoming(UPCOMING_API_KEY)

upcoming = UpcomingCached(UPCOMING_API_KEY)
bach_events = upcoming.event.search(search_text='Bach', location="Berkeley, CA")
print "There are %s events." % (len(bach_events))
for event in bach_events:

 print "%s\t%s\t%s" % (event['id'], event['name'], event['description']),

 v = upcoming.venue.getInfo(venue_id=event['venue_id'])
 print "%s\t%s\t%s\t%s" % (v[0]['name'], v[0]['address'], v[0]['city'],
~CCC
v[0]['zip']),

 # metro_id are ;-delimited list. Sometimes the metro list is empty....
 try:
 m_ids = string.split(event['metro_id'],";")
 # deal with only the first metro on the list
 m = upcoming.metro.getInfo(metro_id=m_ids[0])
 print 'metro name: ', m[0]['name']
 except:
 print "no metro name"

Here is an additional line of Python to add an event to Upcoming.yahoo.com:

new_event = upcoming.event.add(token=token,name=name,venue_id=venue_id, \
category_id=category_id, start_date=start_date,end_date=end_date, \
 description=description)

Caution As of this writing, I had to update upcoming_api.py to make sure UPCOMING_API is set to

http://upcoming.yahooapis.com/services/rest/.

Eventful.com
Eventful.com is another event aggregator that has an API. You can find the web site
here:
http://eventful.com/

Its API is documented is here:
http://api.eventful.com/

The list of methods in the API is here:
http://api.eventful.com/docs/

To use the API, you need to request a key from here:
http://api.eventful.com/keys/

The base URL for RESTful calls is here:
http://api.evdb.com/rest/{path for methods}

For example:
http://api.evdb.com/rest/events/search

Searching for Events (Using Feeds)
Before we jump into the API, let’s see how to look at the URL language to search for
events in the user interface and to return feeds. You can search for Bach events within
five miles of Berkeley, California, with this:

http://eventful.com/events?page_size=50&sort_order=Date&within=5&units=mi&q=bach
&l=~CCC
berkeley%2C+ca&t=Future&c=

You can get these results as an RSS 2.0 feed:

http://eventful.com/rss/events/?page_size=50&sort_order=Date&within=5&units=mi&q
=~CCC
bach&l=berkeley%2C+ca&t=Future&c=

or as an Atom 1.0 feed:

http://eventful.com/atom/events/?page_size=50&sort_order=Date&within=5&units=mi&
q=~CCC
bach&l=berkeley%2C+ca&t=Future&c=

You can change this Atom feed into KML using Yahoo! Pipes the way we did so for
Upcoming.yahoo.com. The Eventful.com feeds have latitude/longitude information
embedded (specifically, in the GeoRSS GML encoding). For example:

<georss:where>
 <gml:Point>
 <gml:pos>37.72084 -122.476619</gml:pos>

 </gml:Point>
</georss:where>

You can run Yahoo! Pipes here:
http://pipes.yahoo.com/pipes/pipe.info?_id=lJPPcvWA3BGvrWbY6kjTQA

to generate a KML feed for Bach-related events in the Berkeley area:

http://pipes.yahoo.com/pipes/pipe.run?_id=lJPPcvWA3BGvrWbY6kjTQA&_render=kml&l=
~CCC
Berkeley%2C+CA&page_size=50&q=Bach&t=Future&units=mi&within=5

Searching for Events (Using the API)
Let’s first get an XML response from the /events/search method, which is documented
here:

http://api.eventful.com/docs/events/search
http://api.eventful.com/rest/events/search?app_key={api-
key}&keywords=Bach&location=~CCC
Berkeley%2C%20CA&within=5&units=5&page_size=50

to which you get event elements like this:

<event id="E0-001-005962514-3">
 <title>SF State Recital by Roger Woodward, piano faculty</title>
 <description> Details:
Program: J.S. Bach: Well-
~CCCTempered Clavier, Book I </description>
 <start_time>2007-10-23 20:00:00</start_time>
 <stop_time/>
 <tz_id/>
 <tz_olson_path/>
 <tz_country/>
 <tz_city/>
 <venue_id>V0-001-000550476-8</venue_id>
 <venue_name>San Francisco State University</venue_name>
 <venue_display>1</venue_display>
 <venue_address>1600 Holloway Avenue</venue_address>
 <city_name>San Francisco</city_name>
 <region_name>California</region_name>
 <region_abbr>CA</region_abbr>
 <postal_code>94132</postal_code>
 <country_name>United States</country_name>
 <country_abbr2>US</country_abbr2>
 <country_abbr>USA</country_abbr>
 <latitude>37.72084</latitude>
 <longitude>-122.476619</longitude>
 <geocode_type>EVDB Geocoder</geocode_type>
 <all_day>0</all_day>
 <recur_string/>
 <trackback_count>0</trackback_count>
 <calendar_count>0</calendar_count>
 <comment_count>0</comment_count>
 <link_count>1</link_count>
 <going_count>0</going_count>

 <watching_count>0</watching_count>
 <created>2007-09-02 00:19:50</created>
 <owner>evdb</owner>
 <modified>2007-09-02 04:07:16</modified>
 <performers/>
 <image/>
 <privacy>1</privacy>
 <calendars/>
 <groups/>
 <going/>
</event>

Interestingly enough, we can also get iCalendar and RSS directly from the API. To
get iCalendar, you use the /events/ical method documented here:
http://api.eventful.com/docs/events/ical

To get the Bach keyword–related events within five miles of Berkeley as an
iCalendar feed, use this:

http://api.eventful.com/rest/events/ical?app_key={api-
key}&keywords=Bach&location=~CCC
Berkeley%2C%20CA&within=5&units=5&page_size=50

You can also change http to webcal and feed it to Google Calendar.

PHP API Kit for Eventful.com
You can find a list of API kits for Eventful.com here:
http://api.eventful.com/

For PHP, there are two choices. One is Services_Eventful, which we won’t cover
here, and the other is Services_EVDB (which seems to be compatible with PHP 4 and 5).
You can find the code here:
http://api.eventful.com/libs/Services_EVDB

Let’s say you want to extract this:
http://eventful.com/events/categories/technology?l=Berkeley%2C%20California%2C%2
0USA

The corresponding REST call is as follows:

http://api.evdb.com/rest/events/search?category=technology&location=Berkeley%2C%
20~CCC
California%2C%20USA&within=25&page_size=5&app_key={api-key}

Note that the default is a 25-mile radius of the location. This shows how you can do
this with the Services_EVDB PHP API kit:

<?php
// http://api.eventful.com/libs/Services_EVDB

ini_set(
 'include_path',
 ini_get('include_path') . PATH_SEPARATOR . "/home/rdhyee/pear/lib/php" .

PATH_SEPARATOR . '/usr/local/lib/php'
);

require 'Services/EVDB.php';

// Enter your application key here. (See http://api.evdb.com/keys/)
$app_key = '[APP_KEY]';

$evdb = &new Services_EVDB($app_key);

// Authentication is required for some API methods.
$user = $_REQUEST['user'];
$password = $_REQUEST['password'];

if ($user and $password)
{
 $l = $evdb->login($user, $password);

 if (PEAR::isError($l))
 {
 print("Can't log in: " . $l->getMessage() . "\n");
 }
}

// All method calls other than login() go through call().
$args = array(
 'id' => $_REQUEST['id'],
);
$event = $evdb->call('events/get', $args);

if (PEAR::isError($event))
{
 print("An error occurred: " . $event->getMessage() . "\n");
 print_r($evdb);
}

// The return value from a call is an XML_Unserializer data structure.
print_r($event);
?>

To see this code in action on Eventful.com, the event number is E0-001-004433237-
3:26
http://examples.mashupguide.net/ch15/evdb1.php?id=E0-001-004433237-3

Python API Kit for Eventful.com
You can find the documentation for eventfulpy here:
http://api.eventful.com/libs/python/

As of writing, the latest version is as follows:
http://api.eventful.com/libs/python/eventfulpy-0.3.tar.gz

See “Installing simplejson and httplib2 on Windows Python” in case you run into
problems installing the dependencies for eventfulpy.

INSTALLING SIMPLEJSON AND HTTPLIB2 ON WINDOWS PYTHON

eventfulpy depends on two other libraries: simplejson
(http://undefined.org/python/#simple_json) and httplib2
(http://bitworking.org/projects/httplib2/). When I installed simplesjon for Python 2.5
for Windows, I needed to do the following (I’m using the default directory for Python 2.5 on Windows:
C:\Python25):

 1. Install setuptools (http://pypi.python.org/pypi/setuptools). The easiest way is to
run the .exe installer (for example, setuptools-0.6c7.win32-py2.5.exe).

 2. Use Subversion svn to check out simplejson from http://svn.red-
bean.com/bob/simplejson/trunk/.

 3. I installed mingw32 (http://www.mingw.org/) because I didn’t have Visual Studio installed.

 4. Build the simplejson library with the following command:

c:\python25\python.exe setup.py build -c mingw32 --force

 5. Install the library by copying the resulting build\lib.win32-2.5\simplejson to
C:\Python25\Lib\site-packages (I manually copied the directory because I could not find
a way to coax the standard installation command (c:\python25\python.exe setup.py
install) into working.

You can find an alternative approach here:

http://maurus.net/weblog/2007/10/02/simplejson-17x-activestate-python-
~CCCand-the-visual-studio-2003-compiler/

I found installing httplib2 to be more straightforward. For instance, you can download the
latest distribution from http://code.google.com/p/httplib2/downloads/list and run
c:\python25\python.exe setup.py install.

26. http://eventful.com/events/E0-001-004433237-3

The following code shows how to query for events and list the results:

import eventful

api = eventful.API('[API-KEY]')

If you need to log in:
api.login('[USER]','[PASSWORD]')

events = api.call('/events/search', q='Bach', l='Berkeley, CA', within='5', \
units='mi', time='future', page_size=50)
for event in events['events']['event']:
 print "%s at %s" % (event['title'], event['venue_name'])

Let’s now write JCDL 2008 to Eventful.com. Note that like Upcoming.yahoo.com,
Eventful.com also uses IDs for venues. The following code has a venue_search method
to help locate venues and their corresponding IDs:

parameters for creating the upcoming event -- now I want to write it to
eventful

name = 'Joint Conference on Digital Libraries (JCDL) 2008'
start_date = '2008-06-15'
end_date = '2008-06-20'
description = """
[DESCRIPTION]
"""
url = 'http://www.jcdl2008.org/'

def venue_search(keywords,location):
 """
 print out possibilities...
 """
 import eventful

 api = eventful.API('[API-KEY]')
 api.login('[USER]','[PASSWORD]')
 vs = api.call('/venues/search', keywords = keywords, location=location)
 for v in vs['venues']['venue']:
 print "%s\t%s\t%s" % (v['id'], v['name'], v['address'])

import eventful

api = eventful.API('[API-KEY]')
api.login('[USER]','[PASSWORD]')

#http://api.eventful.com/docs/events/new
tz_olsen_path = 'America/New_York'
all_day = '1'
privacy = 1
tags = ''
free = 0

this is the eventful venue_id for the hotel.
eventful_venue_id = 'V0-001-000412401-5'

ev = api.call('/events/new', title=name, start_time=start_date, \
 stop_time=end_date, tz_olsen_path=tz_olsen_path, all_day=all_day,
\
 description=description, privacy=privacy,
venue_id=eventful_venue_id)

import pprint
pprint(ev)

With success, you get back an ID for the event (http://eventful.com/events/E0-
001-006801918-6):

{u'id': u'E0-001-006801918-6',
 u'message': u'Add event complete',
 u'status': u'ok'}

Programming with iCalendar
Since iCalendar is an important data format, it’s worth looking a bit more at how to
manipulate it in PHP and Python.

Note The hCalendar microformat is designed to express the same information as iCalendar but in a
form that is embeddable in HTML and RSS. See Chapter 18 on microformats for how to use and create
hCalendar.

Python and iCalendar
A good Python module to use is iCalendar:
http://codespeak.net/icalendar/

As of this writing, the latest version is 1.2. You download this code here:
http://codespeak.net/icalendar/iCalendar-1.2.tgz

To run a basic test of iCalendar interoperability, I created an event on Apple iCal
and e-mailed it to myself. On my notebook, the filename is as follows:
D:\Document\Docs\2007\05\iCal-20070508-082112.ics

What’s actually in the file?

BEGIN:VCALENDAR
VERSION:2.0
X-WR-CALNAME:open house at the Academy
PRODID:-//Apple Computer\, Inc//iCal 2.0//EN
CALSCALE:GREGORIAN
METHOD:PUBLISH
BEGIN:VTIMEZONE
TZID:US/Pacific
LAST-MODIFIED:20070508T152112Z
BEGIN:DAYLIGHT
DTSTART:20070311T100000
TZOFFSETTO:-0700
TZOFFSETFROM:+0000
TZNAME:PDT
END:DAYLIGHT
BEGIN:STANDARD
DTSTART:20071104T020000
TZOFFSETTO:-0800
TZOFFSETFROM:-0700
TZNAME:PST
END:STANDARD
END:VTIMEZONE

BEGIN:VEVENT
DTSTART;TZID=US/Pacific:20070510T190000
DTEND;TZID=US/Pacific:20070510T200000
SUMMARY:open house at the Academy
UID:AAE603F6-A5A1-4E11-91CF-E6B06649A756
ORGANIZER;CN="Raymond Yee":mailto:rdhyee@yahoo.com
SEQUENCE:6
DTSTAMP:20070508T152047Z
END:VEVENT
END:VCALENDAR

Now, I want to read it in using Python. Let’s also consult the documentation to build
a simple example:27

27. http://codespeak.net/icalendar/, http://codespeak.net/icalendar/example.html, http://codespeak.

net/icalendar/small.html, and http://codespeak.net/icalendar/groupscheduled.html

from icalendar import Calendar
fname = r'D:\Document\Docs\2007\05\iCal-20070508-082112.ics'
cal = Calendar.from_string(open(fname,'rb').read())
ev0 = cal.walk('vevent')[0]
print ev0.keys()
print "summary: ", str(ev0['SUMMARY'])
print "start:", str(ev0['DTSTART'])
ev0['DTSTART'] is datetime.date() object
print "end:", str(ev0['DTEND'])

If you run it, you get this:

['DTSTAMP', 'UID', 'SEQUENCE', 'SUMMARY', 'DTEND', 'DTSTART', 'ORGANIZER']
summary: open house at the Academy
start: 20070510T190000
end: 20070510T200000

Another Python iCalendar library is vobject:
http://vobject.skyhouseconsulting.com/usage.html

The following code shows how to use vobject to parse the same iCalendar file:

import vobject
fname = r'D:\Document\Docs\2007\05\iCal-20070508-082112.ics'
cal = vobject.readOne(open(fname,'rb').read())
event = cal.vevent
print event.sortChildKeys()
print "summary: ", event.getChildValue('summary')
print "start:", str(event.getChildValue('dtstart'))
event.getChildValue('dtstart') is datetime.date() object
print "end:", str(event.getChildValue('dtend'))

PHP and iCalendar
You can download iCalcreator, a PHP library for parsing and creating iCalendar files,
here:
http://www.kigkonsult.se/iCalcreator/index.php

The module is documented here:
http://www.kigkonsult.se/iCalcreator/docs/using.html

Here is some code using iCalcreator to read and parse the same iCalendar file from
the previous section:

<?php

require_once 'iCalcreator/iCalcreator.class.php';

 $filename = 'D:\Document\Docs\2007\05\iCal-20070508-082112.ics';

 $v = new vcalendar(); // initiate new CALENDAR
 $v->parse($filename);

 # get first vevent
 $comp = $v->getComponent("VEVENT");

 #print_r($comp);
 $summary_array = $comp->getProperty("summary", 1, TRUE);
 echo "summary: ", $summary_array["value"], "\n";

 $dtstart_array = $comp->getProperty("dtstart", 1, TRUE);
 $dtstart = $dtstart_array["value"];
 $startDate = "{$dtstart["year"]}-{$dtstart["month"]}-{$dtstart["day"]}";
 $startTime = "{$dtstart["hour"]}:{$dtstart["min"]}:{$dtstart["sec"]}";

 $dtend_array = $comp->getProperty("dtend", 1, TRUE);
 $dtend = $dtend_array["value"];
 $endDate = "{$dtend["year"]}-{$dtend["month"]}-{$dtend["day"]}";
 $endTime = "{$dtend["hour"]}:{$dtend["min"]}:{$dtend["sec"]}";

 echo "start: ", $startDate,"T",$startTime, "\n";
 echo "end: ", $endDate,"T",$endTime, "\n";

?>

The output of the code is as follows:

summary: open house at the Academy
start: 2007-05-10T19:00:00
end: 2007-05-10T20:00:00

I will use iCalcreator in the following section to convert iCalendar feeds into Google
calendar entries.

Exporting an Events Calendar to iCalendar and
Google Calendar
In this section, I’ll show you how to use what you’ve learned so far to solve a specific
problem. After you have used event aggregators such as Upcoming.yahoo.com and
Eventful.com, you’ll get used to the idea of having a single (or at least a small number)
of places to see all your events. iCalendar-savvy calendars (such as Google Calendar,

Apple iCal, and Microsoft Outlook 2007) have also become unifying interfaces by
letting you subscribe to iCalendar feeds containing events that might be of interest to
you. As extensive as Upcoming.yahoo.com, Eventful.com, and Google Calendar (which
has been a marketplace of events by letting users author publicly available calendars)
might be, there are still many sources of events that are not covered by such services.
This section teaches you how to turn event-related information toward destinations
where you might like to see them.

Specifically, I will work through the following example: converting events listed
under the Critic’s Choice section of UC Berkeley’s online event calendar
(http://events.berkeley.edu) into two different formats:

 * An iCalendar feed

 * A Google calendar

I use this example to demonstrate how to use Python and PHP libraries to parse and
write iCalendar feeds and to write to a Google calendar. I’ve chosen the UC Berkeley
event calendar because it already has calendaring information in a structured form
(XML and iCalendar), but as of the time of writing, it’s not quite in the configuration
that I create here. You can generalize this example to the event calendars that you might
be interested in, some with more structured information than others. Moreover, instead
of writing to Google Calendar, you can use the techniques I showed earlier in the
chapter to write the events to Upcoming.yahoo.com or Eventful.com.

The Source: UC Berkeley Event Calendars
The Critic’s Choice section of the UC Berkeley event calendar highlights some of the
many events that happen on the campus:
http://events.berkeley.edu/

As documented here:
http://events.berkeley.edu/documentation/user/rss.html

the calendar provides feeds in three formats: RSS 2.0, a live_export XML format, and
iCalendar. Of particular interest is that every event in the calendar, which is referenced
by an event ID (for example, 3950), is accessible in a number of representations:

 * As HTML:
http://events.berkeley.edu/?event_ID={event_ID}

 * As RSS 2.0:
http://events.berkeley.edu/index.php/rss/sn/pubaff/?event_ID={event_ID}

 * As iCalendar:
http://events.berkeley.edu/index.php/ical/event_ID/{event_ID}/.ics

 * As live_export XML:

http://events.berkeley.edu/index.php/live_export/sn/pubaff/?event_ID={event_ID}

You can get feeds for many parts of the event calendar (including feeds for events
for today, this week, or this month), but there is currently no Critic’s Choice iCalendar
feed. Having such a feed would enable one to track Critic’s Choice events in Google
Calendar or Apple iCal. The Critic’s Choice is, however, available as an RSS 2.0 feed
here:
http://events.berkeley.edu/index.php/critics_choice_rss.html

The following two sections show you how to extract the event ID for each of the
events listed as part of Critic’s Choice, read the iCalendar instance for an event to create
a synthesized iCalendar feed, and write those events to Google Calendar.

Creating an iCalendar Feed of Critic’s Choice Using Python
The following code, written in Python, knits together the iCalendar entries for each of
the Critic’s Choice events into a single iCalendar feed through the following steps:

 1. Parsing the list event_ID from here:
http://events.berkeley.edu/index.php/critics_choice_rss.html

 2. Reading the individual iCalendar entries and adding it to the one for the Critic’s
Choice

Note that this code treats iCalendar essentially as a black box. In the next section,
we’ll parse data from iCalendar and rewrite it in a format demanded of Google
Calendar:

"""
generate iCalendar feed out of the UC Berkeley events calendar
"""

import sys
try:
 from xml.etree import ElementTree
except:
 from elementtree import ElementTree

import httplib2
client = httplib2.Http(".cache")

import vobject

a function to get individual iCalendar feeds for each event.
http://events.berkeley.edu/index.php/ical/event_ID/3950/.ics

def retrieve_ical(event_id):
 ical_url = "http://events.berkeley.edu/index.php/ical/event_ID/%s/.ics" %
(event_id)
 response, body = client.request(ical_url)
 return body

read the RSS 2.0 feed for the Critic's Choice

from elementtree import ElementTree

cc_RSS = "http://events.berkeley.edu/index.php/critics_choice_rss.html"
response, xml = client.request(cc_RSS)
doc = ElementTree.fromstring(xml)

from pprint import pprint
import urlparse

create a blank iCalendar
ical = vobject.iCalendar()

for item in doc.findall('.//item'):
 # extract the anchor to get the elementID
 # http://events.berkeley.edu/index.php/critics_choice.html#2875
 ev_url = item.find('link').text
 # grab the anchor of the URL, which is the event_ID
 event_id = urlparse.urlparse(ev_url)[5]
 print event_id
 s = retrieve_ical(event_id)
 try:
 ev0 = vobject.readOne(s).vevent
 ical.add(ev0)
 except:
 print "problem in generating iCalendar for event # %s " % (event_id)

ical_fname =
r'D:\Document\PersonalInfoRemixBook\examples\ch15\critics_choice.ics'
f = open(ical_fname, "wb")
f.write(ical.serialize())
f.close()

upload my feed to the server
http://examples.mashupguide.net/ch15/critics_choice.ics

import os
os.popen('scp2 critics_choice.ics ~CCC
"rdhyee@pepsi.dreamhost.com:/home/rdhyee/examples.mashupguide.net/ch15')

By automatically running this script every day, whenever the RSS for the Critic’s
Choice is regenerated, the resulting iCalendar feed will be kept up-to-date:
http://examples.mashupguide.net/ch15/critics_choice.ics

Writing the Events to Google Calendar
In this section, instead of generating an iCalendar feed directly, I will instead write the
events to Google Calendar using the PHP Zend Calendar API library. I created a new
calendar for this purpose, whose user ID is as follows:
n7irauk3nns30fuku1anh43j5s@group.calendar.google.com

Hence, the public calendar is viewable here:

http://www.google.com/calendar/embed?src=n7irauk3nns30fuku1anh43j5s@group.calend
ar.~CCC
google.com

The following code loops through the events listed in the Critic’s Choice RSS feed,
extracts all the corresponding iCalendar entries, and then writes those events to the
Google Calendar. The code first clears out the old events in the calendar before writing
new events.

Perhaps the trickiest part of this code is handling recurring events. The relevant
documentation in the Google Calendar API on recurring events includes the following:

 *
 http://code.google.com/apis/calendar/developers_guide_php.html#Creating~C
CCRecurring

 * http://code.google.com/apis/gdata/elements.html#gdRecurrence

The Google Calendar API expresses recurrence using the syntax and data model of
recurring events in iCalendar, which you can learn about in the following sections of the
iCalendar specification (section 4.3.10 on RECUR, section 4.8.5.1 on EXDATE
[exception dates/times], and section 4.8.5.4 on the Recurrence Rule):

 * http://www.w3.org/2002/12/cal/rfc2445#sec4.3.10

 * http://www.w3.org/2002/12/cal/rfc2445#sec4.8.5.1

 * http://www.w3.org/2002/12/cal/rfc2445#sec4.8.5.4

More to the point, the following code captures information about recurring events
by using regular expressions to extract occurrences of the DTSTART, DTEND, RRULE, RDATE,
EXDATE, and EXRULE statements to pass to the Google Calendar API as recurrence data.
(Remember to substitute your own Google username and password and the user ID for a
Google Calendar for which you have write permission.)

<?php

/*
 *
 * ucb_critics_gcal.php
 */

require_once 'Zend/Loader.php';
Zend_Loader::loadClass('Zend_Gdata');
Zend_Loader::loadClass('Zend_Gdata_ClientLogin');
Zend_Loader::loadClass('Zend_Gdata_Calendar');

require_once 'iCalcreator/iCalcreator.class.php';

function getResource($url){
 $chandle = curl_init();
 curl_setopt($chandle, CURLOPT_URL, $url);
 curl_setopt($chandle, CURLOPT_RETURNTRANSFER, 1);
 $result = curl_exec($chandle);
 curl_close($chandle);

 return $result;
}

// UCB events calendar

gets all relevant rules for the first VEVENT in $ical_string
function extract_recurrence($ical_string) {

 $vevent_rawstr = "/(?ims)BEGIN:VEVENT(.*)END:VEVENT/";
 preg_match($vevent_rawstr, $ical_string, $matches);

 $vevent_str = $matches[1];

 # now look for DTSTART, DTEND, RRULE, RDATE, EXDATE, and EXRULE

 $rep_tags = array('DTSTART', 'DTEND', 'RRULE', 'RDATE', 'EXDATE', 'EXRULE');

 $recur_list = array();

 foreach ($rep_tags as $rep) {

 $rep_regexp = "/({$rep}(.*))/i";
 if (preg_match_all($rep_regexp, $vevent_str, $rmatches)) {
 foreach ($rmatches[0] as $match) {
 $recur_list[]= $match;
 }
 }

 } //foreach $rep

 return implode($recur_list,"\r\n");

}

function parse_UCB_Event($event_id) {

 $ical_url =
"http://events.berkeley.edu/index.php/ical/event_ID/{$event_id}/.ics";
 $rsp = getResource($ical_url);

 # write out the file
 $tempfile = "temp.ics";
 $fh = fopen($tempfile,"wb");
 $numbytes = fwrite($fh, $rsp);
 fclose($fh);

 $v = new vcalendar(); // initiate new CALENDAR
 $v->parse($tempfile);

 # how to get to the prelude to the vevent? (timezone)

 #echo $v->getProperty("prodid");

 # get first vevent
 $comp = $v->getComponent("VEVENT");

 #print_r($comp);

 $event = array();

 $event["summary"] = $comp->getProperty("summary");
 $event["description"] = $comp->getProperty("description");

optional -- but once and only once if these elements are here:
dtstart, description,summary, url

 $dtstart = $comp->getProperty("dtstart", 1, TRUE);
 $event["dtstart"] = $dtstart;

assume that dtend is used and not duration

 $event["dtend"] = $comp->getProperty("dtend", 1, TRUE);

 $event["location"] = $comp->getProperty("location");
 $event["url"] = $comp->getProperty("url");

check for recurrence -- RRULE, RDATE, EXDATE, EXRULE

 $recurrence = extract_recurrence($rsp);

 $event_data = array();
 $event_data['event'] = $event;
 $event_data['recurrence'] = $recurrence;
 return $event_data;

} // parse_calendar

function extract_eventIDs($xml)
{

 $ev_list = array();

 foreach ($xml->channel->item as $item) {

 $link = $item->link;
 $k = parse_url($link);
 $ev_list[] = $k['fragment'];
 }
 return $ev_list;
}

// Google Calendar facade

function getClientLoginHttpClient($user, $pass)
{
 $service = Zend_Gdata_Calendar::AUTH_SERVICE_NAME;

 $client = Zend_Gdata_ClientLogin::getHttpClient($user, $pass, $service);
 return $client;
}

// code adapted from the Google documentation
// this posts to the DEFAULT calendar -- how do I change to post elsewhere?

function createGCalEvent ($client, $title, $desc, $where, $startDate = '2008-01-
20',
 $startTime = '10:00:00',
 $endDate = '2008-01-20', $endTime = '11:00:00', $tzOffset = '-08',
 $recurrence=null, $calendar_uri=null)
{
 $gdataCal = new Zend_Gdata_Calendar($client);
 $newEvent = $gdataCal->newEventEntry();

 $newEvent->title = $gdataCal->newTitle($title);
 $newEvent->where = array($gdataCal->newWhere($where));
 $newEvent->content = $gdataCal->newContent("$desc");

if $recurrence is not null then set recurrence -- else set the start and
enddate:

 if ($recurrence) {
 $newEvent->recurrence = $gdataCal->newRecurrence($recurrence);
 } else {
 $when = $gdataCal->newWhen();
 $when->startTime = "{$startDate}T{$startTime}{$tzOffset}:00";
 $when->endTime = "{$endDate}T{$endTime}{$tzOffset}:00";
 $newEvent->when = array($when);
 } //if recurrence

// Upload the event to the calendar server
// A copy of the event as it is recorded on the server is returned

 $createdEvent = $gdataCal->insertEvent($newEvent,$calendar_uri);
 return $createdEvent;
}

function listEventsForCalendar($client,$calendar_uri=null) {

 $gdataCal = new Zend_Gdata_Calendar($client);

 $eventFeed = $gdataCal->getCalendarEventFeed($calendar_uri);
 foreach ($eventFeed as $event) {
 echo $event->title->text, "\t", $event->id->text, "\n";
 foreach ($event->when as $when) {
 echo "Starts: " . $when->startTime . "\n";
 }
 }
 echo "\n";
}

function clearAllEventsForCalendar($client, $calendar_uri=null) {

 $gdataCal = new Zend_Gdata_Calendar($client);

 $eventFeed = $gdataCal->getCalendarEventFeed($calendar_uri);
 foreach ($eventFeed as $event) {
 $event->delete();
 }

}

// bridge between UCB events calendar and GCal

function postUCBEventToGCal($client,$event_id, $calendar_uri=null) {

 $event_data = parse_UCB_Event($event_id);

 $event = $event_data['event'];
 $recurrence = $event_data['recurrence'];

 #print_r($event);
 #echo $recurrence;

 $title = $event["summary"];
 $description = $event["description"];
 $where = $event["location"];

there is a possible parameter that might have TZ info. Ignore for now.
 $dtstart = $event["dtstart"]["value"];
 $startDate = "{$dtstart["year"]}-{$dtstart["month"]}-{$dtstart["day"]}";
 $startTime = "{$dtstart["hour"]}:{$dtstart["min"]}:{$dtstart["sec"]}";

there is a possible parameter that might have TZ info. Ignore for now.
 $dtend = $event["dtend"]["value"];
 $endDate = "{$dtend["year"]}-{$dtend["month"]}-{$dtend["day"]}";
 $endTime = "{$dtend["hour"]}:{$dtend["min"]}:{$dtend["sec"]}";

 # explicitly set for now instead of calculating.
 $tzOffset = '-07';

 # I might want to do something with the url
 $description .= "\n" . $event["url"];

 echo "Event: ", $title,$description, $where, $startDate, $startTime, $endDate,
 $endTime, $tzOffset, $recurrence, "\n";

 $new_event = createGCalEvent($client,$title,$description, $where, $startDate,
 $startTime, $endDate, $endTime, $tzOffset,$recurrence, $calendar_uri);

}

credentials for Google calendar

$USER = "[USER]";
$PASSWORD = "[PASSWORD]";

the calendar to write to has a userID of
n7irauk3nns30fuku1anh43j5s@group.calendar.google.com
substitute the userID of your own calendar
$userID = urlencode("[USERID]");
$calendar_uri = "http://www.google.com/calendar/feeds/{$userID}/private/full";

$client = getClientLoginHttpClient($USER, $PASSWORD);

get UCB events list

$cc_RSS = "http://events.berkeley.edu/index.php/critics_choice_rss.html";
$rsp = getResource($cc_RSS);

for now, read the cached file
#$fname = "D:\Document\PersonalInfoRemixBook\examples\ch15\cc_RSS.xml";
#$fh = fopen($fname, "r");

#$rsp = fread($fh, filesize($fname));
#fclose($fh);

$xml = simplexml_load_string($rsp);
$ev_list = extract_eventIDs($xml);

echo "list of events to add:";
print_r($ev_list);

loop through events list

limit the number of events to do
$maxevent = 200;
$count = 0;

clear the existing calendar

echo "Deleting existing events....";
clearAllEventsForCalendar($client,$calendar_uri);

Add the events
foreach ($ev_list as $event_id) {

 $count +=1;
 if ($count > $maxevent) {
 break;
 }
 echo "Adding event: {$event_id}", "\n";
 postUCBEventToGCal($client,$event_id,$calendar_uri);

}

list the events on the calendar
listEventsForCalendar($client,$calendar_uri);
?>

Summary
Here are some of things you learned in this chapter:

 * You spent a considerable amount of time studying Google Calendar because of its
sophisticated API and use of feeds including Atom feeds and iCalendar.

 * You learned how to access and manipulate the feeds in Google Calendar, either
by directly issuing the relevant RESTful HTTP requests with curl or by using the
PHP and Python API kits.

 * You took a quick look at 30boxes.com as another example of a web-based
calendar with an API.

 * You then studied how to consume feeds and exercise the APIs of two event
aggregators: Upcoming.yahoo.com and Eventful.com.

 * You studied how to program with iCalendar in PHP and Python.

 * Finally, you learned how to synthesize an iCalendar feed from other iCalendar
entries and how to write iCalendar information to a Google Calendar.

These are some key points to note:

 * Online calendars are becoming more popular; they are especially useful when
they have APIs and feeds to help with data integration.

 * Event aggregators are interesting complements in this space to the online
calendars.

 * iCalendar is an important data exchange standard. There are variant forms that
play off of it: hCalendar and parts of the Google Atom format for calendars.

	Google Calendar
	Setting Up Google Calendar As an End User
	Some Usage Patterns for Google Calendar
	Sharing Calendars

	Exploring the Feed Formats from Google Calendar
	iCalendar/iCal
	Google Calendar Atom Data

	Using the GData-Based Calendar API Directly
	Obtaining an Authentication Token
	Feeds Available from Google Calendar
	visibility and projection
	Calendar Feeds
	meta-feed
	allcalendars
	owncalendars

	Event Feeds

	Using the PHP API Kit for Google Calendar
	Using the Python API Kit for Google Calendar

	30boxes.com
	An End User Tutorial
	30boxes.com API

	Event Aggregators
	Upcoming.yahoo.com
	Feeds from Search Results
	Read-Only Parts of the API
	Parts of the API That Require Authentication
	Getting the Token
	Adding an Event with the API

	API Kits for Upcoming.yahoo.com

	Eventful.com
	Searching for Events (Using Feeds)
	Searching for Events (Using the API)
	PHP API Kit for Eventful.com
	Python API Kit for Eventful.com

	Programming with iCalendar
	Python and iCalendar
	PHP and iCalendar

	Exporting an Events Calendar to iCalendar and Google Calendar
	The Source: UC Berkeley Event Calendars
	Creating an iCalendar Feed of Critic’s Choice Using Python
	Writing the Events to Google Calendar

	Summary

