
CHAPTER 12 

Making Your Web Site 
Mashable 
This chapter is a guide to content producers who want to make their web sites friendly 
to mashups. That is, this chapter answers the question, how would you as a content 
producer make your digital content most effectively remixable and mashable to users 
and developers? 

Most of this book is addressed to creators of mashups who are therefore consumers 
of data and services. Why then should I shift in this chapter to addressing producers of 
data and services? Well, you have already seen aspects of APIs and web content that 
make it either easier or harder to remix, and you’ve seen what makes APIs easy and 
enjoyable to use. Showing content and data producers what would make life easier for 
consumers of their content provides useful guidance to service providers who might not 
be fully aware of what it’s like for consumers. 

The main audience for the book—as consumers (as opposed to producers) of 
services—should still find this chapter a helpful distillation of best practices for creating 
mashups. In some ways, this chapter is a review of Chapters 1–11 and a preview of 
Chapters 13–19. Chapters 1–11 prepared you for how to create mashups in general. I 
presented a lot of the technologies and showed how to build a reasonably sophisticated 
mashup with PHP and JavaScript as well as using mashup tools. Some of the discussion 
in this chapter will be amplified by in-depth discussions in Chapters 13–19. For 
example, I’ll refer to topics such as geoRSS, iCalendar, and microformats that I discuss 
in greater detail in those later chapters. Since I don’t assume that you will have read any 
of those chapters, I will give you enough context in this chapter to understand the points 
I’m making. 

Specifically, in this chapter, I will outline what content producers can do in two 
major categories: 

 * Ways in which they can make their web sites and content mashable without even 
producing a formal API 

 * Ways in which they can shape their API (features that are friendly to mashups) 

Before content producers can decide how to act on any of this advice, they need to 
consider how remixability fits in with what they’re trying to accomplish. We look at 
some of these issues first. 

Tip For detailed notes on how to create, run, and maintain an API from the perspective of a seasoned 
API creator, please consult Chapter 11 of Building Scalable Web Sites (O’Reilly Media, 2006), written by 
Cal Henderson of Flickr. 



Why Make Your Web Site Mashable? 
To decide on how remixable you want to make your content, you need to understand 
what you want to accomplish. There is a wide range of interest with respect to making 
APIs. Some content producers (such as Amazon, Google, and Yahoo!) set out to 
develop a platform and therefore invest huge amounts of effort in creating an API. 
Others are interested in making things convenient for users of their content and create 
an API if it’s not too difficult. Other content producers want to work actively against 
any remixing of their content. The course of action you take as a content producer will 
certainly depend heavily on your level of interest in the mashability of your content to 
others as well as the resources you have at your disposal to create an API. 

Here are some arguments for why you might want to make your content remixable 
(in other words, why it’s good not only for content users but also for you as a content 
producer): 

 * With a good API, developers and users can extend what you provide. Look at 
how the vast majority of the API kits for Flickr are developed by third parties 
rather than Flickr. 

 * Third-party developers can develop applications you haven’t even thought of or 
are too busy to create. (I’d say geotagging is a huge example of this for Flickr—it 
opened up a whole new vein of activity for Flickr.) 

 * APIs appeal to users who are concerned about lock-in and want to use their 
content in places other than your web site. 

 * Many users are starting to expect to have APIs; as a result, having an API is a 
selling point to prospective users. 

 * With an API, you might be able to extend your presence and point others to you 
(for example, Flickr photos are distributed all over the Web, but they all link back 
to Flickr). Indeed, Flickr is the platform for photo sharing on the Web. But 
Flickr’s attribution requirement (in other words, the photos served from Flickr 
need to link back to Flickr) keeps Flickr from being commoditized as a file-
hosting service. 

 * If the API is of sufficient economic value to your users, it is possible to charge for 
using your API. 

 * In some cases, you might be able to create something like Amazon.com, which as 
a platform for e-commerce takes a cut of purchases built on top of its platform. 

 * Making your data more open is contributing to the common goals of the entire 
Web. 

Using Techniques That Do Not Depend on APIs 
Without creating a formal API for your web site, you can nonetheless make things 
friendly for mashups while creating a highly usable site for your users. 



Use a Consistent and Rich URL Language 
Chapter 2 analyzed the URL language of Flickr and showed how its highly addressable, 
granular, transparent, and persistent URL language opens up a lot of opportunities to 
mash up content from Flickr merely by exploiting Flickr’s URL structures. The human-
readable, transparent URLs of Flickr lets developers link deeply into the fabric of the 
web site, even in the absence of formal documentation. The fact that Flickr works hard 
to keep the URLs permanent allows mashup creators to depend on the URLs to keep 
working. Granular URLs give mashups very fine-grained access and control over 
resources at Flickr. You will learn in Chapter 14 how these same qualities make it 
possible to use a social bookmarking system such as del.icio.us to bookmark content 
from Flickr. Hence, developing your own web site with a rich URL language avails 
your content to similar mashup techniques. 

Moreover, the discipline of creating a consistent and human-readable URL structure 
benefits you as a content producer. It forces you to abstract the interface of your 
application (for example, the URL structures) from your back-end implementation, thus 
making your web site more maintainable and flexible. 

Use W3C Standards to Develop Your Web Site 
The use of good standards helps bring clarity to your web design, especially standards 
that insist on separating concerns (such as content from design). For instance, 
disentangling formatting from the markup and sticking it into CSS has a side benefit for 
mashup folks of producing content that is clearly laid out. Even generating well-formed 
XHTML (instead of tag-soup HTML) would be a huge boon since it allows for more 
error-free scraping of data. All this makes things more parsable even in the absence of 
explicit XML feeds. 

Pay Attention to Web Accessibility 
An accessible site lets more people access your content. You might be required by law 
to make your web site accessible to people with disabilities (see 
http://section508.gov/). Even if you aren’t legally obliged to produce accessible 
content, adhering to modern web design such as producing valid (X)HTML naturally 
contributes to producing better accessibility. The end product of increased accessibility 
(for example, clean separation of content from style) is more mashable than 
nonaccessible sites. 

Consider Allowing Users to Tag Your Content 
Tagging provides a lightweight way for users to interact with and label and annotate 
content. As I demonstrated in Chapter 3, those tags can be the basis of simple mashups. 
There are some tricky issues to consider when you create a system for tagging—for 
example, how to incorporate multiple words and what to do about singular vs. plural 
tags. There is no universally accepted way to do this, so you need to weigh the 
possibilities (I covered some in Chapter 3). Having a strategy for multilingual tags is 
helpful (in other words, how to handle Unicode). 



Consider also whether you have built enough structure to allow the hacking of tags. 
Could a user have jump-started geotagging as was done in Flickr with your site? Do you 
have something equivalent to machine tags? 

Make Feeds Available 
In Chapter 4, you learned about syndication feeds, their syntax, and how they can be 
used to represent your content in different formats to be exported to other applications. 
Feeds are becoming ubiquitous on the Web—they’re the closest thing to the lingua 
franca of data exchange. Users by and large are beginning to expect feeds to be 
available from web sites. Users like syndication; they spend more time away from your 
site than on yours. Feeds let people access data from your site in their preferred local 
context (such as a feed reader). Moreover, there is a whole ecosystem built around 
feeds. By producing feeds, your data becomes part of that ecosystem. 

Creating feeds out of your web site should be very high on a priority list. In fact, 
depending on what systems you are using to publish, you might already be generating 
them (for example, weblogs or many content management systems). By virtue of 
pushing your photos to Flickr, YouTube, and many other social sharing systems, you 
have the option of autogenerating feeds. 

Feeds sound intimidating, but don’t worry. You can start small and grow them. You 
might have a single feed for the most recent content. See how that works for you. Then 
you can consider generating feeds throughout your system. (Remember that Flickr has 
an extensive selection of feeds.) 

If you need to programmatically generate feeds, they represent a good place to start 
in the business of generating XML. You might ask which feed type to generate. Ideally, 
you should generate many types like Flickr does, which takes little effort. That is 
possible if you have an abstract model of the data that you then format for different 
format types by writing a template for each format. If you don’t want to go through that 
effort, then Atom 1.0 is a good place to start. Atom 1.0 is now recognized by lots of 
feed aggregators. It’s also a good stepping-stone toward building an API. (You would 
have the Atom Publishing Protocol, covered in Chapter 7, and GData as good prior art 
to start.) Moreover, Atom feeds can flow into Yahoo! Pipes and the Google Mashup 
Editor (GME). RSS 2.0 wouldn’t be far behind in my priority list. Also, if you want to 
get a start on experimenting with RDF and the semantic Web, a good place to start is to 
produce RSS 1.0. 

Let’s return briefly to the issue of the feed ecosystem. As you have seen, Yahoo! 
Pipes and the GME use feeds natively. The Flickr API puts out many formats (as you 
saw in Chapter 6) but not RSS 2.0 or Atom, although there are many Flickr feeds. You 
saw in Chapter 11 that even with the extensive number of Flickr feeds to access the 
Flickr API, I still had to convert Flickr XML to RSS 2.0, which I did with Yahoo! Pipes. 
That conversion made the data available to the GME. 

As a final note, try using feed autodiscovery to enable easier access to feeds by 
users (which was discussed in Chapter 4). 

Finally, be friendly to extensions to feeds. Remember that RSS 2.0, Atom 1.0, and 
RSS 1.0 are all extensible. Make use of this extensibility. If your system consumes feeds 
that have extensions, don’t strip them out. 



Make It Easy to Post Your Content to Blogs and Other Web Sites 
In Chapter 5, you learned about how blogs can be integrated with web sites such as 
Flickr. Flickr’s Blog button allows users to post a photo to a weblog. Moreover, the 
Flickr All Sizes button makes it easy for users to embed a photo into a blog or other web 
site by providing HTML fragments that they readily copy and paste elsewhere. In a 
similar fashion, YouTube provides HTML to embed a video, and Google provides 
HTML to embed its maps and calendars. You as a content producer can emulate the 
practice of making it easy to post your content to other sites while linking back to your 
own web site, where the content originates. In addition to facilitating the flow of content 
from your web site, you track comments originating from other web sites through a 
variety of linkback mechanisms. (See Chapter 5 for more information.) 

Encourage the Sharing of Content with Explicit Licenses 
Licensing digital content clears away important barriers to creating mashups with that 
content. In your web site, you should allow users to explicitly set the licensing of 
content and data to use, such as the Creative Commons licenses do, for instance. Set 
defaults that encourage sharing, but always give your users the choice to change those 
defaults. Build functionality to enable users to search and browse content according to a 
license. 

As you learned in Chapter 2, Flickr is a good model here. Flickr has done a huge 
amount to promote open content specifically licensed through a Creative Commons 
license. That users can explicitly tie a Creative Commons license to a piece of content 
has been a tremendous enabler for remixing. If you don’t give a mechanism for your 
users to assert a certain license, there might be too much ambiguity around the reuse of 
content. Even if you don’t have granular control over the licensing of content on the 
site, it’s very helpful to have a global statement about intellectual property issues. That 
is, some content producers license an entire site in a certain way. For example, the 
Wikipedia is licensed under GFDL: 
http://en.wikipedia.org/wiki/Wikipedia:Copyrights 

Freebase is licensed under CC-By: 
http://www.freebase.com/signin/licensing 

In Chapter 2, we discussed the barriers to screen-scraping. If you don’t have an API 
but don’t mind your users accessing your data, consider creating some bot-friendly 
terms of service (ToS). 

Develop Extensive Import and Export Options for User Content 
The more ways you have to get data in and out of an application, the better. Ideally, you 
would support protocols and data formats that would help your users. As a bonus, let 
your users embed their data hosted on your site somewhere else on the Web (for 
example, through a JavaScript badge). Super-flexible badges can be used themselves to 
access data for mashups and can hint at the existence of a feature-rich API. 



Study How Users Remix Your Content and Make It Easier to Do 
So 
Be prepared to be surprised by how people might use and reuse your content. See how 
people are using your content, and make it easier to do so. The primary example I have 
in mind here is when people started to hack the Google Maps API. Google, instead of 
stopping those people, actually formalized the API. 

At the least, if you don’t want to develop an API, when you see people use your web 
site in unusual ways, you should think about what’s really go on and whether to make it 
easier to carry out this reuse. 

Creating a Mashup-Friendly API 
Some web APIs are easier than others to use for creating mashups. In the following 
sections, I’ll give advice to content producers aiming to make their APIs friendlier for 
consumption. 

Learn From and Emulate Other APIs 
You can learn a lot from studying what other API providers are doing. That’s why this 
book is useful; you will learn about what API makers are doing—at least from the 
outside. 

What are some great examples to study? Flickr is a good one obviously. Recently, 
I’ve come to appreciate the Google documentation as being really good too. It has a lot 
of copy-and-paste code, plenty of getting-started sections, and the API references. Often 
there are API kits in a number of languages; of course, a lot of time and energy went 
into creating this documentation. 

Moreover, if you are a little player, consider making your API look a lot like those 
of the big players. For example, 23hq.com, a photo-sharing site, decided to mimic 
Flickr’s API instead of developing its own: 
http://www.23hq.com/doc/api/ 

That enabled Dan Coulter to support that API in addition to Flickr’s API in 
phpFlickr: 
http://phpflickr.com/phpFlickr/README.txt 

If 23hq.com had built its own API, it would not be able to leverage the work of the 
much-larger Flickr development community. 

Whether the creator of an API is flattered or irritated by the sincere imitation of the 
API by other players surely depends on context. Consumers of the API, however, will 
be all too happy to not have to learn yet another API to access essentially the same 
functionality from different web sites. 

Keep in Mind Your Audiences for the API 
You need to consider two distinct audiences when deploying a public API. The first is 
the direct audience for the API; this is the developer community, which includes those 
who will directly program against your API. The second is the indirect audience for the 
API but perhaps a direct audience for your web site: the possible audience for those 



third-party applications. Remember that although you have a direct audience in the 
developers, you are ultimately trying to reach the second, potentially much larger, 
audience. 

Make Your API Easy to Learn 
Good documentation of the features, the API, data formats, and any other aspect of the 
web site makes it much easier to understand and recombine its data and functionality. 
You should clearly document the input and output data expected. Do you provide 
pointers to schemas or ways to validate data? Documentation reduces the amount of 
guesswork involved. Moreover, it brings certainty to whether a function you uncover 
through reverse engineering is an official feature or an undocumented hack that has no 
guarantee of working for any length of time. 

Why, for instance, do I recommend people using the Flickr API as a starting point 
(and maybe for the long term)? 

 * It’s well-documented and has structures that make it easy to learn, such as the 
Flickr API Explorer at 
http://www.flickr.com/services/api/explore/?method=flickr.photos. (I don’t 
know of any documentation for APIs that is as clear as this. You can try a query 
and see it happen.) 

 * It has lots of code samples. 

 * It has toolkits that implement the API in your favorite language. Flickr is ahead of 
the game here with more than ten language-specific implementations of the Flickr 
API. 

The Flickr API Explorer is excellent and should be more widely emulated. It lets 
you invoke a method in the browser and see the response. The documentation lists not 
only the methods but also the input parameters and error codes. The great thing is that 
you can read the documentation and try something. Moreover, the Flickr API Explorer 
shows you a URL coming out of the REST API that you can copy and paste elsewhere. 

Test the Usability of Your API 
Use the techniques from Chapters 7 and 8 to remix your own site to see how mashable 
your site is and how well your API works. Review Chapter 11, and read in the feeds 
from your site into Yahoo! Pipes or the Google Mashup Editor. 

You might be using your own APIs in an Ajax interface—but it’s helpful to think 
like a mashup creator who is coming to your site for the first time and who will use 
more generic tools to analyze your site. It’s interesting to see how your site looks from 
that point of view. 

You can go further by extrapolating techniques from usability testing 
(http://www.useit.com/alertbox/20000319.html) to testing your API, instead of the UI 
of your web site. For instance, you could recruit a group of developers and give them a 
problem to be solved using your API. See what these developers actually do. Make 
changes to your API in response to feedback. 



Build a Granular, Loosely Coupled Architecture So That 
Creating an API Serves You As Much As It Does Others 
A public API for your web site does not have to be something you build only for others. 
Rather, it can be the natural outcome of creating a scalable and adaptable web site. One 
architectural pattern that has proven effective in creating such web sites—that of 
service-oriented architectures—is to decompose functionality into independent, fine-
grained components (called services) that can then be stitched together to create 
applications. By defining clear interfaces among the services, one can change the 
internal workings of individual services while minimizing the effect on other services 
and applications that consume those services. It is this loose coupling of the components 
that makes the whole web site scalable. 

With a set of granular services in place, you as a content producer have the building 
blocks of a public API. You can always start with a private API—which many Ajax 
interfaces demand. That way, you can decide to roll out a public API. (For instance, you 
use Firebug to study how the Flickr API is often being called by Ajax parts of the Flickr 
interface.) 

If you decide to go for an API, make APIs an integral part of your site. The fact that 
the system depends on the APIs ensures that the APIs aren’t just throwaway parts of the 
system. This provides assurance that the API is an integral part of the system. 

For more insight into how service orientation benefits Amazon.com, which is a 
major consumer of its own services, read an interview with Werner Vogels, CTO of 
Amazon.com: 
http://www.acmqueue.com/modules.php?name=Content&pa=showpage&pid=388 

Embrace REST But Also Support SOAP and XML-RPC If You 
Can 
From Chapters 6 and 7, you know that REST is much easier for your users to get started 
with. (Amazon S3 in Chapter 16 provides another concrete case study of REST.) The 
use of REST and not just SOAP or XML-RPC lowers the barrier to entry. With REST, 
you can see results in the web browser without having to invoke a SOAP client (which 
is bound to be less available than a web browser). There’s a strong argument to be made 
that by building a good RESTful human web API, you are already building a good API: 
http://blog.whatfettle.com/2007/01/11/good-web-apis-are-just-web-sites/ 

However, if your primary developer audience is oriented toward enterprise 
development and is equipped with the right tooling, you might have to prefer 
SOAP/WSDL over REST. Remember that SOAP without WSDL isn’t that useful. And 
if you do SOAP, be strictly observant of the version you are using. 

Again, if you build an abstraction layer underneath, you might be able to handle 
multiple transport protocols. Your favorite programming frameworks might 
autogenerate REST or SOAP interfaces for your web application. 



Consider Using the Atom Publishing Protocol As a Specific 
Instantiation of REST 
If you build Atom 1.0 feeds, you’re already on the road to building an API. Recall that 
there’s plenty of prior art to be studied in the Google GData APIs if you want to go 
down this road. (Chapter 7 has a study of GData; Chapter 15 on the Google Calendar 
API is another study of GData.) 

Encourage the Development of API Kits: Third Party or In-
House 
It’s nice to have both the raw XML web services and the language-specific API kits. In 
theory, according to the argument of REST or the SOAP/WSDL camp folks, having the 
right web services should obviate the need for language-specific API kits. My own 
experience is the opposite. Sure, the Google GData APIs (see Chapters 7, 8, and 10) are 
RESTful, but having PHP and Python libraries is very useful. Even with WSDL, a 
language-specific API kit is handy. 

Ideally you would have API packets for every possible language. Of course this is 
not practical—and not even the largest companies such as Google provide that many 
API kits. The priority is to have a good well-documented API. After that, I would say if 
you can put out an API kit in the language that you use in-house, that’s already a great 
service. Google puts out API kits for its in-house languages. Microsoft puts out API kits 
in the languages it supports. Beyond that you need to talk to your potential developers 
and see what’s important to them. (It’s nice to have API kits that cover a range of 
languages.) Remember you don’t have to develop all the API kits yourself—Flickr 
doesn’t develop that many but provides a place to publicize them and promotes those 
API kits in the community of developers. 

If you can provide both, it’s nice to have a server-side language API kit and 
JavaScript API kit for client-side access. 

Support Extensive Error Reporting in Your APIs 
Note that for better or worse, it’s very easy for developers to ignore error handling. You 
have to encourage them to handle errors. It starts with having good documentation of 
errors. 

I’m of mixed minds about whether to embed the error in the XML body or as an 
HTTP response code. HTTP error codes are a standard way of dealing with errors, but 
it’s not necessarily the easiest thing for new developers to understand. At any rate, in 
SOAP you can do fault handling in the fault code of the SOAP body. In XML-RPC, it’s 
dealt with in the error body. I might suggest that even if you put error codes in the 
response body that you use the HTTP error codes as a starting point to build your own 
error response functionality. 

Note The specification for the latest version of SOAP (1.2) now provides guidance on how to use the 
various 2xx, 3xx, 4xx HTTP status codes.1 



Accept Multiple Formats for Output and Input 
It’s nice to have multiple ways of getting content in and out of an application. For 
example, Flickr has many ways to upload photos: the web interface, the desktop 
Uploadr, the API, and e-mail. Even so, some people have requested FTP and some type 
of mass downloading. Flickr doesn’t offer FTP capabilities, but some people have 
worked to simulate it: 
http://blog.wired.com/monkeybites/2007/06/upload_to_flick.html 

For calendaring, you’ll see the use of iCalendar and CSV in Chapter 15. In Chapter 
13, you’ll see how the proliferation of KML and geoRSS has been a boon. 

Support UI Functionality in the API 
As a consumer of APIs, I advocate support for all the elements available to users in the 
UI—and then some. It’s frustrating for mashup creators to not be able to do something 
in the API that is clearly allowed by the user interface. There are sometimes good 
reasons to not enable certain actions in the API—but apart from such reasons, having a 
complete API is really helpful. As you saw in Chapter 6, there is a strong overlap 
between the capabilities of the Flickr API and the UI. There are some discrepancies 
between the API and UI—they got close but not an exact alignment. 

Include a Search API for Your Own Site 
You might consider adding an API to specifically enable searching of your web site. See 
Chapter 19 for how OpenSearch can then be used to integrate your web site’s search 
functionality in other frameworks. 
 1. http://www.w3.org/TR/2007/REC-soap12-part2-20070427/#http-reqbindwaitstate 

Version Your API 
APIs, like all programming artifacts, are likely to change. Instead of having only one 
version of your API that can change, support multiple versioning of your API. That 
doesn’t mean you will have to support every version indefinitely. Publishing a timeline 
for when you plan to retire a specific version of your API and documenting changes 
between versions allows the consumers of your API to make an orderly transition and 
adapt to changes in your API. Flickr doesn’t explicitly version its API; for an example 
of an API with support of multiple versions, see the following: 
http://developer.amazonwebservices.com/connect/kbcategory.jspa?categoryID=118 

Foster a Community of Developers 
A vibrant and active community makes a lot of mashup work practical. When making 
mashups, there are things that are theoretically possible to do—if you had the time, 
energy, and resources—but are practically impossible for you as an individual to pull 
off. A community of developers means that there are other people to work with, lots of 
examples of what other people have done, and often code libraries that you can build 
upon. 



Don’t Try to Be Too Controlling in Your API 
You should have a clear ToS for the API—see Chapter 6 for a discussion of the ToS for 
the Flickr API. Don’t try to be too controlling of your API. For instance, you might be 
tempted to forbid a user of your API from combining data from your site with that of 
other sites, such as those of your competitors. That’s very much against the spirit of 
mashups and is likely to antagonize your developers. I would argue that asking a user of 
your API to reference your web site is a good balance between the interests of the API 
consumer and API producer. 

There are a lot of issues when it comes to establishing a policy for your API—but 
one is worthy of special consideration is that of commercial use. It’s not uncommon to 
make a basic distinction between the commercial and noncommercial use of an API, 
especially if you are not charging for the noncommercial use of an API. It’s useful to 
reflect on how Flickr and others handle the distinction in the context of your own 
business model. Remember, though, that it’s sometimes tricky to distinguish between 
commercial and noncommercial use; you will need to set up a process to make such a 
distinction. 

Consider Producing a Service-Level Agreement (SLA) 
A service-level agreement formally spells out the level of service a user can expect from 
a service and the remedies for failures to meet the expected level of service. It’s 
debatable whether most SLAs are of much practical use. What I really want is perfectly 
reliable service. Can any remedy offered by most service providers adequately 
compensate for disappointing that desire? 

Nonetheless, as a user, I find that a thoughtfully constructed SLA reassuring 
because it gives me a sense of the level of reliability to expect from a service provider. 
A specific measurable target of performance is likely better than none at all. As an 
example, Amazon.com recently introduced an SLA for its S3 service: 
http://www.amazon.com/b?ie=UTF8&node=379654011 

Help API Users Consume Your Resources Wisely 
Encourage the users of your API to consume compute cycles and bandwidth 
parsimoniously—most developers will want to cooperate. Document your expectations 
on the limits you set for the total volume or rate of API calls. Error messages from your 
API to indicate the throttling of API calls are very useful to consumers of an API. 

When developing an API, it’s not unusual for you to issue keys to developers. 
However, tracking usage by the key alone is sometimes insufficient to manage the level 
of usage—keys are often leaked. You might track API usage based on a combination of 
key and originating IP address. 

Both server- and client-side caching help with the performance of an API. You will 
want to help the users of your API to cache results properly. It’s extremely useful to 
have APIs that tell you when something has been updated and to return changes in the 
state of the data since a given time. 



Consider Open Sourcing Your Application 
If you want to open up your site to deeper remixability, you might even publish the 
source for your web site. Users will then have the option of studying the source directly 
should reverse engineering—or reading the relevant documentation—not give you the 
answers they need. 

Easy-to-Understand Data Standards 
The use of open data standards by content producers and consumers is a good thing, but 
it’s hard for someone outside a field of endeavor to understand what those standards are 
and exactly how important they are. (For instance, it doesn’t take a lot of time working 
with online calendars to grasp that iCalendar is an important standard, but it did take me 
some study to grasp how central it really is.) Hence, it is helpful if for every subject you 
could find a simple, clear articulation of the standards for a given field. In the absence 
of a clear consensus about what the relevant standards are, a trustworthy and clear-
headed outline of the main contenders and the perceived strengths and weaknesses 
would be really helpful to an outsider or newbie. 

The Cover Pages (http://xml.coverpages.org/) hosted by OASIS is the closest 
thing to such a resource that I’ve seen: 

OASIS provides the Cover Pages as a public resource to document and 
encourage the use of open standards that enhance the intelligibility, 
quality, and longevity of digital information. 

Complementing a wide use of open standards is a concerted effort to generate API 
kits that comprehensively and accurately interpret these standards. For example, as 
you’ll see in Chapter 15 in the discussion iCalendar, it’s hard to tell how good any given 
API kit is at interpreting and creating that data format. 

Moreover, the presence of good validators and schemas for any data formats would 
be extremely helpful to mashup developers. For example, the early days of working 
with KML were hard because there was so much trial and error with writing something 
and then feeding it to Google Earth to see whether it would work. With good validators 
in place, data producers can debug their data without less experimentation. Some 
examples of useful validators are as follows: 

 * http://feedvalidator.org/, which helps with KML as well as RSS and Atom 
feeds (remember Chapter 4) 

 * W3C validators (http://validator.w3.org/ and http://jigsaw.w3.org/css-
validator/) to check on the validity of (X)HTML and CSS, respectively 

Summary 
This chapter presented a series of techniques for making a web site more mashable. 
After explaining why content producers would want to make their data and services 
remixable, I then presented some techniques that do not depend on creating a formal 
API. The heart of creating a mashable web site is producing an API that is friendly to 



developers. I presented techniques for creating such an API, drawing from what you 
learned from the process of creating mashups in various contexts. 


	Why Make Your Web Site Mashable?
	Using Techniques That Do Not Depend on APIs
	Use a Consistent and Rich URL Language
	Use W3C Standards to Develop Your Web Site
	Pay Attention to Web Accessibility
	Consider Allowing Users to Tag Your Content
	Make Feeds Available
	Make It Easy to Post Your Content to Blogs and Other Web Sites
	Encourage the Sharing of Content with Explicit Licenses
	Develop Extensive Import and Export Options for User Content
	Study How Users Remix Your Content and Make It Easier to Do So

	Creating a Mashup-Friendly API
	Learn From and Emulate Other APIs
	Keep in Mind Your Audiences for the API
	Make Your API Easy to Learn
	Test the Usability of Your API
	Build a Granular, Loosely Coupled Architecture So That Creating an API Serves You As Much As It Does Others
	Embrace REST But Also Support SOAP and XML-RPC If You Can
	Consider Using the Atom Publishing Protocol As a Specific Instantiation of REST
	Encourage the Development of API Kits: Third Party or In-House
	Support Extensive Error Reporting in Your APIs
	Accept Multiple Formats for Output and Input
	Support UI Functionality in the API
	Include a Search API for Your Own Site
	Version Your API
	Foster a Community of Developers
	Don’t Try to Be Too Controlling in Your API
	Consider Producing a Service-Level Agreement (SLA)
	Help API Users Consume Your Resources Wisely
	Consider Open Sourcing Your Application

	Easy-to-Understand Data Standards
	Summary

