
CHAPTER 10

Creating Mashups of
Several Services
In previous chapters, you learned about the raw ingredients of mashups. This chapter
teaches you how to write mashups by walking you through a detailed example of
mashing up Flickr photos with Google Maps. This chapter draws upon what you have
learned in previous chapters. In Chapter 1, you learned about how geotagging photos
started in Flickr and how people such as Rev. Dan Catt and C.K. Yuan built tools—
essentially mashups, such as Geobloggers and GMiF—to display those geotagged
photos. In Chapter 2, you learned about how such features were baked into Flickr. In
Chapter 6, you learned about how to program the Flickr API, while in Chapter 8, you
learned the basics of Ajax and how to program Google Maps. We will draw upon all
those pieces of knowledge in this chapter.

Given that you can already display Flickr photos on a Yahoo! map, why would you
still build any Flickr-map mashup? Well, you might for a number of reasons. You might
have a preference for Google Maps over the default maps. Making such a mashup is an
instructive process. What better way to learn about mashups than to mash up the two
most mashed up services: GMap and Flickr?

What you learn in this chapter will be useful for other mashups. The type of mashup
shown here is an extremely common one: getting data from somewhere and putting that
data on a map. (Here, we’re not screen-scraping that data but rather getting that directly
out of an API. There are mashups that require screen-scraping, but that’s largely outside
the scope of this book.)

You will also learn about the interaction of server-side and client-side programming,
another major issue in many mashups. In addition, you will learn about the central
process of dealing with impedance matching between APIs. That is, you will find how
to make APIs that have different conceptual and implementation details fit together so
that data can flow between them. You will learn where to find the common matching
points (for example, latitudes and longitudes are common in both the Flickr API and
Google Maps) and create interfaces (channel adapters) that bridge the APIs. Finally,
there is also the process of taking the work you did and then recasting the same logic
into a different environment.

The bulk of this chapter is devoted to writing a simple mashup of Flickr photos with
Google Maps using the Google Maps API, but we finish by creating a Flickr/Google
Maps mashup using the Google Mapplets API. Since the Mapplets API is similar but
not identical to the Google Map API, you will be able to use some of the programming
you will do for Google Maps. You’ll see how mapplets eliminate the need for server-
side programming on your part; the solution we will come up with will be a pure
HTML/JavaScript combination.

The goals of this chapter are as follows:

 * To enable you to build a significant end-to-end mashup that gives you knowledge
about building other mashups

 * To cover and reinforce the materials beforehand, which was background material
building up to this mashup building

The Design
For both the Google Maps and the Google Mapplets–based mashup, you will want to let
your users search for geotagged photos in Flickr and to display them on a Google map.
When the user changes the bounding box (that is, the rectangular region of a map often
defined by the coordinates of the map’s southwest and northeast corners) of the map (by
panning and zooming or by changing the zoom level of the map), a new search for
geotagged photos is done, and the resulting pictures are displayed on the map.

We will build the mashups in manageable chunks:

 * You’ll review what you have already learned about geotagging in Flickr and then
see how to use the Flickr API to associate locations with photos and how to find
geotagged photos.

 * You’ll study how to access XML web services from the browser using the
XMLHttpRequest browser object, both natively and wrapped in the Yahoo! UI
library.

 * You’ll study how the security constraints on the browser necessitate a server-side
proxy for accessing web services.

 * You’ll build a server-side proxy to get Flickr geotagged photos.

 * You’ll work toward building a mashup of the client-side Google Maps API with
the Flickr API by first building a simple client-side framework.

 * You’ll elaborate the client-side framework to translate a search for Flickr
geotagged photos into an HTML display of the results.

 * You’ll transform this framework into a mashup of the Google Maps API and
Flickr through a series of steps: setting up a basic map; having the map respond to
changes in the viewport of the map; bringing together the Flickr and Google Maps
into the same page, first as independent pieces; wiring the bounding box of the
Google map to be the source of lat/long coordinates; and finally, making the
pictures show up in the map.

 * You’ll refactor this work into a Flickr/Google mapplet to create a pure client-side
solution.

 * You’ll draw conclusions about what you learned in making these mashups and
see how they can be applied to creating other mashups.

Note Chapter 13 provides greater detail on maps and further elaborates on the core examples of this
chapter—by mashing up Flickr and Google Earth via KML.

Background: Geotagging in Flickr
As you learned in Chapter 1, geotagging in Flickr started with people using tags
(specifically, geotagged and geo:lon, geo:lat) to associate a latitude and longitude with
a given photo. This way of geotagging was very popular. Lots of people started creating
geotagged photos. Moreover, programs arose to both display geotagged photos (such as
GMiF and Geobloggers) and create geotagged photos.

This approach (what I refer here as old-style geotagging), as cool as it was, was a
hack. Flickr moved to institutionalize geotagging, into what I refer to as new-style
geotagging. First, Flickr created the framework of machine tags to clean up the clutter.
Clearly, there was a desire for developers (spurred on by serving users) to add extra
metadata to Flickr photos. The result was that data meant for machine consumption was
pushed into tags, which were geared more for people manually sticking in descriptions.
Flickr decided to take tags of the following form and make them into machine tags:
namespace:predicate=value

For example, the geo:lat= and geo:lon= tags have become machine tags. This means
they are not displayed by default in the UI. Rather, a user needs to click the “Show
machine tags” link to see these machine tags. (The thinking is that machine tags weren’t
really for human consumption—so why display them?)

Let’s consider a geotagged photo that we already looked at in Chapter 1
(“Campanile in the Fog”):
http://flickr.com/photos/raymondyee/18389540/

You can see the relevant geotags under Tags by clicking “Show machine tags” to
reveal this:

geo:lon=-122.257704
geo:lat=37.8721

You can use the Flickr API to get at these regular and machine tags. Remember that
Flickr geotagging was based originally on the geotagged tag and tags of the form
geo:lon=[LONGITUDE] and geo:lat=[LATITUDE] that became machine tags. For example, to
use the Flickr API to look up the tags for the photo whose ID is 18389540, you issue the
following HTTP GET request:

http://api.flickr.com/services/rest/?method=flickr.tags.getListPhoto~CCC
&api_key={api_key}&photo_id=18389540

whose response is as follows:

<?xml version="1.0" encoding="utf-8" ?>
<rsp stat="ok">
 <photo id="18389540">
 <tags>
 <tag id="29475-18389540-11787" author="48600101146@N01"
 authorname="Raymond Yee" raw="campanile"
machine_tag="0">campanile</tag>
 <tag id="29475-18389540-1700" author="48600101146@N01"
 authorname="Raymond Yee" raw="geotagged"
machine_tag="0">geotagged</tag>
 <tag id="29475-18389540-10860922" author="48600101146@N01"
 authorname="Raymond Yee" raw="geo:lon=-122.257704"

 machine_tag="1">geo:lon=122257704</tag>
 <tag id="29475-18389540-10860930" author="48600101146@N01"
 authorname="Raymond Yee" raw="geo:lat=37.8721"
 machine_tag="1">geo:lat=378721</tag>
 <tag id="29475-18389540-88988" author="48600101146@N01"
 authorname="Raymond Yee" raw="UC Berkeley"
 machine_tag="0">ucberkeley</tag>
 <tag id="29475-18389540-9233381" author="48600101146@N01"
 authorname="Raymond Yee" raw="mashupguide"
 machine_tag="0">mashupguide</tag>
 </tags>
 </photo>
</rsp>

Note You might wonder why you get machine tags for latitude and longitude since using geo:lat and
geo:lon has been superceded. I’m showing this technique for historic interest and also because it’s still
used by older pieces of software (such as the Google Maps in Flickr Greasemonkey script that uses old-
style geotagging).

With new-style geotagging, support for geotagging was built into the core of Flickr
(geo-information became a first-class citizen of the Flickr data world). Each photo can
optionally be associated with a location (that is, a latitude and longitude) and
permissions about who can see this location.

There are some major advantages of the new-style geotagging:

 * You can search for photos in a given bounding box. There was no way to do so
with regular tags unless you crawled a whole bunch of geotagged photos and built
your own database of those photos and their locations and built geosearching on
top of that database. Flickr does that for you.

 * You can control the visibility of the location independently of that photo (that is,
the photo can be visible but not the location). In the old-style geotagging, if the
photo is visible, then its tags are also visible, thus rendering any geo:lat/geo:lon
visible.

 * The new style is the official way to do geotagging, whereas the old style never
had official support. Along with it being the official way comes a lot of
supporting features: the Flickr map, a link to a map for any georeferenced photo,
and so on.

By setting a location, you give a photo a latitude, longitude, and accuracy (1–16):
world level equals 1, country equals approximately 3, and street equals approximately
16. The default accuracy is 16. Permissions are the values for four parameters:
is_public, is_contact, is_friend, and is_family (0 or 1). (See Chapter 2 for a
discussion of the permission system in Flickr.) There are five methods under
flickr.photos.geo: getting, setting, deleting the location of a given photo
(flickr.photos.geo.getLocation, flickr.photos.geo.setLocation, and
flickr.photos.geo.removeLocation), and getting and setting the permission
(flickr.photos.geo.getPerms and flickr.photos.geo.getPerms).

You’ll notice that for the following, in addition to using the old-style geotagging in
the example photo, I am also using the new-style geotagging:
http://flickr.com/photos/raymondyee/18389540/

Since this photo is public, anyone can use flickr.photos.geo.getLocation to access
the photo’s latitude and longitude. (All the other geo.* methods require authorization.)
Let’s use the API to get the location. Issue an HTTP GET request on this:

http://api.flickr.com/services/rest/?method=flickr.photos.geo.getLocation
&api_key={api_key}&photo_id=18389540

You will get the following:

<?xml version="1.0" encoding="utf-8" ?>
<rsp stat="ok">
 <photo id="18389540">
 <location latitude="37.8721" longitude="-122.257704" accuracy="16">
 <locality>Oakland</locality>
 <county>Alameda</county>
 <region>California</region>
 <country>United States</country>
 </location>
 </photo>
</rsp>

For the other methods, it’s easier to demonstrate using a Flickr API kit that helps
you with the Flickr authentication process (which is covered in detail in Chapter 6). I’ll
now display some code to show how to use Python to manipulate a photo’s location and
geopermission. Here, flickr.client is an authenticated instance of the Flickr client
using Beej’s Python Flickr API (http://flickrapi.sourceforge.net/).

Let’s retrieve the location of the photo:
>>> rsp = flickr.client.photos_geo_getLocation(photo_id=18389540)

Now let’s remove the location of the photo:
>>> rsp = flickr.client.photos_geo_removeLocation(photo_id=18389540)

Let’s write the location back to the photo:

>>> rsp = flickr.client.photos_geo_setLocation(photo_id=18389540,lat=37.8721,
lon=-122.257704,accuracy=16)

In addition to reading and writing the location and geopermissions of an individual
photo, you can use the Flickr API to search for photos that have an associated location.
You do so by using the flickr.photos.search method (the one to which you were
introduced in Chapter 6), documented here:
http://www.flickr.com/services/api/flickr.photos.search.html

To do a search for geotagged photos, you add the search parameters of the following
form:
bbox=lon0,lat0,lon1,lat1

Here lon0,lat0 and lon1,lat1 are the longitude and latitude of the southwest and
northeast corners of the bounding box, respectively. Note that you can also use the

accuracy parameter to specify the minimum accuracy level you demand of the specified
locations.

Let’s consider the example of searching for photos around Berkeley in a bounding
box with the following parameters:

SW: 37.81778516606761, -122.34374999999999
NE: 37.92619056937629, -122.17208862304686

The following will get the first page of all the publicly available geotagged photos
in Flickr, including photos of all accuracies (with this call, you can get at the total
number of such photos):

http://api.flickr.com/services/rest/?api_key={api_key}&method=flickr.photos.sear
ch~CCC
&bbox=-180%2C-90%2C180%2C90&min_upload_date=820483200&accuracy=1

You can get the first page of photos with a bounding box around the UC Berkeley
campus:

http://api.flickr.com/services/rest/?api_key={api_key}&method=flickr.photos.sear
ch~CCC
&bbox=-122.34374999999999%2C+37.81778516606761%2C+-122.17208862304686~CCC
%2C+37.92619056937629&min_upload_date=820483200&accuracy=1

The Flickr API doesn’t like unqualified searches for geotagged photos. That is, you
can’t just, say, search for photos in a certain bounding box—you need to use at least one
other search parameter to reduce the strain on the Flickr database caused by unqualified
searches. Here I’m using the min_upload_date parameter to convince Flickr to give some
results.

Background: XMLHttpRequest and Containing
Libraries
In the previous chapters, especially Chapters 6 and 7, I concentrated on showing you
how to make web service requests using server-side languages such as PHP and Python.
In this section, I will show you how to make HTTP requests from JavaScript in the
browser. The key piece of technology is the XMLHttpRequest (XHR) object (or XHR-like
objects in Internet Explorer). I will outline the basics of XHR, covering briefly how to
use XHR in the raw and then in the form of a library (specifically the YUI Connection
Manager) that abstracts the details of XHR for you.

Using XMLHttpRequest Directly
The XHR object is an API for JavaScript for transferring XML and other textual data
between the (client-side) browser and a server. There are differences in naming the
object between Internet Explorer and the other browsers. Moreover, there are subtle
issues that are easiest to handle by using a good wrapper around XHR, such as the
Yahoo! Connection Manager.

Even though we will be using the Yahoo! Connection Manager to access XHR, it’s
still useful to look at how to use XHR before relying on a library. Drawing from Peter-
Paul Koch’s description of XHR at http://www.quirksmode.org/js/xmlhttp.html and

noting that the following proxies an RSS feed of weather in the 94720 ZIP code (see the
discussion after the code for an explanation of the script) . . .
http://examples.mashupguide.net/ch10/weather.php?p=94720

then I present the following, which shows a typical usage of XHR to read the RSS feed:
http://examples.mashupguide.net/ch10/xhr.html

This extracts and displays an HTML excerpt from the feed:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
 <head>
 <title>xhr.html</title>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" >
 <script type="text/javascript">
 //<![CDATA[

 // based on http://www.quirksmode.org/js/xmlhttp.html

 var XMLHttpFactories = [
 function () {
 xhr = new XMLHttpRequest(); xhr.overrideMimeType('text/xml'); return
xhr;
 },
 function () {return new ActiveXObject("Msxml2.XMLHTTP")},
 function () {return new ActiveXObject("Msxml3.XMLHTTP")},
 function () {return new ActiveXObject("Microsoft.XMLHTTP")}
];

 function getXmlHttpRequest() {
 var xmlhttp = false;
 for (var i=0;i<XMLHttpFactories.length;i++) {
 try {
 xmlhttp = XMLHttpFactories[i]();
 }
 catch (e) {
 continue;
 }
 break;
 }
 return xmlhttp;
 }

 function writeResults() {

 if (xmlhttp.readyState == 4 && xmlhttp.status == 200) {
 resultsDiv = document.getElementById('results');
 //alert(xmlhttp.responseText);
 var response = xmlhttp.responseXML;
 resultsDiv.innerHTML =

response.getElementsByTagName('description')[1].firstChild.nodeValue;
 }

 }

 function load() {

 // http://examples.mashupguide.net/ch10/weather.php?p=94720
 xmlhttp = getXmlHttpRequest();
 if (xmlhttp) {
 zip = "94720";
 url = "weather.php?p=" + zip;
 xmlhttp.open('GET', url, true);
 xmlhttp.onreadystatechange = writeResults;
 xmlhttp.send(null);
 }

 }

 //]]>
 </script>
 </head>
 <body onload="load()" >
 <!-- retrieve -->
 <div id="results"></div>
 </body>
</html>

Note the following:

 * The code attempts to instantiate XHR by trying various ways to do so until it
succeeds—or finally fails if none of the methods works.

 * Through the use of the following:
xmlhttp.onreadystatechange = writeResults;

 the writeResults() method is the callback for the HTTP GET request. That is, XHR
feeds writeResults with its state (xmlhttp.readyState). A typical usage pattern is
for the callback routine to wait until the call is complete (xmlhttp.readyState ==
4) and for the return of an HTTP response code of 200 (to indicate a successful
call).

 * xmlhttp.responseXML returns the body of the HTTP response in the form of an
XML DOM.

Using the YUI Connection Manager
The main goal of this section is to again use JavaScript to call the Flickr API to get
photos from a given bounding box. In the previous section, you learned how to use
XHR directly; here, I show you how to use a library that wraps XHR: the Yahoo! UI
(YUI) Library’s Connection Manager, which is documented here:
http://developer.yahoo.com/yui/connection/

The official examples page for the Connection Manager is here:
http://developer.yahoo.com/yui/examples/connection/index.html

Let’s look at the weather example provided by the YUI:
http://developer.yahoo.com/yui/examples/connection/weather.html

Our ultimate goal is to use the Connection Manager to hook up the Flickr API.
Instead of jumping directly to that goal, I’ll first explain the weather example. The
server-side part is relatively easy to understand, thus letting you concentrate on the
XHR part of the example. The example is built in with the YUI download, and therefore
you can immediately see an example of a client-side JavaScript invocation of the
Yahoo! weather web service.

Enter a ZIP code, and hit Get Weather RSS. The web page uses XHR (wrapped by
the Connection Manager) to retrieve an RSS 2.0 feed for the ZIP code, parses the
weather information, and displays it on the page. Note that this happens without a page
reload—remember that is what XHR (and Ajax) can do for you.

One thing to notice about weather.html is that its JavaScript code invokes
assets/weather.php running from the same server. That is, if you have a version of the
YUI example loaded on examples.mashupguide.net:
http://examples.mashupguide.net/lib/yui/examples/connection/weather.html

you’ll see that it calls the following:
http://examples.mashupguide.net/lib/yui/examples/connection/assets/weather.php

What does weather.php do?
A quick study shows that weather.php takes the ZIP code (that is, 94720), does an

HTTP GET request on the Yahoo! Weather API (http://developer.yahoo.com/weather/),
and echoes the feed back.

For example, suppose you make the following request:

http://examples.mashupguide.net/lib/yui/examples/connection/assets/weather.php?
~CCC
p=94720

The script echoes back the following:
http://xml.weather.yahoo.com/forecastrss?p=94720

This will be something of the following form:

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>
<rss version="2.0" xmlns:yweather="http://xml.weather.yahoo.com/ns/rss/1.0"
xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#">
 <channel>
 <title>Yahoo! Weather - Berkeley, CA</title>
 <link>http://us.rd.yahoo.com/dailynews/rss/weather/Berkeley__CA/~CCC
*http://weather.yahoo.com/forecast/94720_f.html</link>
 <description>Yahoo! Weather for Berkeley, CA</description>
 <language>en-us</language>
 <lastBuildDate>Mon, 05 Nov 2007 12:53 pm PST</lastBuildDate>
 <ttl>60</ttl>
 <yweather:location city="Berkeley" region="CA" country="US"/>
 <yweather:units temperature="F" distance="mi" pressure="in" speed="mph"/>
 <yweather:wind chill="62" direction="300" speed="10"/>
 <yweather:atmosphere humidity="65" visibility="1287" pressure="30.03"
 rising="2"/>
 <yweather:astronomy sunrise="6:39 am" sunset="5:06 pm"/>

 
 <item>
 <title>Conditions for Berkeley, CA at 12:53 pm PST</title>
 <geo:lat>37.87</geo:lat>
 <geo:long>-122.3</geo:long>
 <link>http://us.rd.yahoo.com/dailynews/rss/weather/Berkeley__CA/~CCC
*http://weather.yahoo.com/forecast/94720_f.html</link>
 <pubDate>Mon, 05 Nov 2007 12:53 pm PST</pubDate>
 <yweather:condition text="Fair" code="34" temp="62"
 date="Mon, 05 Nov 2007 12:53 pm PST"/>
 <description><![CDATA[

 Current Conditions:

 Fair, 62 F

 Forecast:

 Mon - Sunny. High: 69 Low: 46

 Tue - Partly Cloudy. High: 70 Low: 47

<a href="http://us.rd.yahoo.com/dailynews/rss/weather/Berkeley__CA/~CCC
*http://weather.yahoo.com/forecast/94720_f.html">
Full Forecast at Yahoo! Weather

 (provided by The Weather Channel)

]]></description>
 <yweather:forecast day="Mon" date="05 Nov 2007" low="46" high="69"
 text="Sunny" code="32"/>
 <yweather:forecast day="Tue" date="06 Nov 2007" low="47" high="70"
 text="Partly Cloudy" code="30"/>
 <guid isPermaLink="false">94720_2007_11_05_12_53_PST</guid>
 </item>
 </channel>
</rss>

Building a Server-Side Proxy
In the previous section, you learned how to use XHR to talk to a local weather.php file
that in turn calls the Yahoo! Weather API. You might wonder why XHR doesn’t go
directly to the Yahoo! Weather API. It turns out that because of cross-domain security
issues in the browser, you can’t use the XHR object to make a request to a server that is
different from the originating server of the JavaScript code. That would apply to the
Flickr API as it does to the Yahoo! Weather API. To get around this issue, you will need
a little help from a server-side proxy in the form of a PHP script whose job it is to take a
tag and bounding box as input, call the Flickr API to get photos, and return that in XML
or JSON to the calling script.

I’ll show you how to write a server-side proxy to the Flickr API to get geotagged
photos, but first I’ll prove to you that you can’t use XHR to go directly to the Yahoo!
Weather API.

What Happens with XHR and Direct API Calls?
Let’s see why weather.html can’t just call Yahoo! directly. You can find out what
happens by running the following code, which instead of calling the local weather.php
goes directly to http://xml.weather.yahoo.com/forecastrss?94720:1

 1. http://examples.mashupguide.net/ch10/direct.connect.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>Direct connect</title>
 <script type="text/javascript" src="/lib/yui/build/yahoo/yahoo.js"></script>
 <script type="text/javascript" src="/lib/yui/build/event/event.js"></script>
 <script type="text/javascript"
 src="/lib/yui/build/connection/connection.js"></script>
 </head>
 <body>
 <div id="status"></div>
 <script>
 div = document.getElementById('status');

 var handleSuccess = function(o){

 function parseHeaders(headerStr){

 var headers = headerStr.split("\n");
 for(var i=0; i < headers.length; i++){
 var delimitPos = headers[i].indexOf(':');
 if(delimitPos != -1){
 headers[i] = "<p>" +
 headers[i].substring(0,delimitPos) + ":"+
 headers[i].substring(delimitPos+1) + "</p>";
 }
 return headers;
 }
 }

 if(o.responseText !== undefined){
 div.innerHTML = "Transaction id: " + o.tId;
 div.innerHTML += "HTTP status: " + o.status;
 div.innerHTML += "Status code message: " + o.statusText;
 div.innerHTML += "HTTP headers: " +
parseHeaders(o.getAllResponseHeaders);
 div.innerHTML += "Server response: " + o.responseText;
 div.innerHTML += "Argument object: property foo = " + o.argument.foo +
 "and property bar = " + o.argument.bar;
 }

 }

 var handleFailure = function(o){
 if(o.responseText !== undefined){
 div.innerHTML = "Transaction id: " + o.tId + "";

http://xml.weather.yahoo.com/forecastrss?94720:1
http://xml.weather.yahoo.com/forecastrss?94720:1
http://xml.weather.yahoo.com/forecastrss?94720:1

 div.innerHTML += "HTTP status: " + o.status + "";
 div.innerHTML += "Status code message: " + o.statusText + "";
 }
 }

 var callback =
 {
 success:handleSuccess, failure: handleFailure,
 argument: { foo:"foo", bar:"bar" }
 };

 var sUrl = "http://xml.weather.yahoo.com/forecastrss?p=94720";
 var request = YAHOO.util.Connect.asyncRequest('GET', sUrl, callback);
 </script>
 <div id="status"></div>
</body>
</html>

If you try to run this, you will get a JavaScript error. In Firefox, if you look in the
Firefox error console, you’ll see the following:

Error: uncaught exception: Permission denied to call method XMLHttpRequest.open

The main lesson here is that XHR lets you access URLs only from the same
domain—for security reasons. Let’s prove that by making a new HTML file in the same
directory as a local copy of weather.php. This security issue, and the workaround by the
server-side proxy, is explained here:
http://developer.yahoo.com/javascript/howto-proxy.html

In case you are still skeptical, you can change the JavaScript in your HTML to
access weather.php from this:
var sUrl = "http://xml.weather.yahooapis.com/forecastrss?p=94720";

to this:
var sUrl = "./weather.php?p=94720";

When you load weather.proxy.html,2 you no longer get the error. Instead, you get
information about the weather—that means communication is happening between your
JavaScript and the Yahoo! weather system. Using Firebug, you can actually see the RSS
embedded in the <div>—but that’s not very nice. Let’s now move toward getting Flickr
information.
 2. http://examples.mashupguide.net/ch10/weather.proxy.html

Building a Server-Side Script for Geolocated Photos
Based on what you just learned, you now know that you need to get results about Flickr
geotagged photos from the Flickr API into the browser using XHR. Hence, you’ll need
a server-side proxy for bridging any client-side script with Flickr. That’s the aim of this
section.

As an exercise, I recommend you write this code yourself before studying the
solution presented. Think about how weather.php works and how you can use

flickr.photos.search to look for geotagged photos. You can imagine a PHP script that
gives access to the full range of input parameters for flickr.photos.search in searches
of public photos and returns the search results in a variety of useful formats. You can
find a list of the input parameters for flickr.photos.search here:
http://www.flickr.com/services/api/flickr.photos.search.html

A script that I wrote to serve as a server-side proxy for flickr.photos.search is
flickrgeo.php. You can run the script here:
http://examples.mashupguide.net/ch10/flickrgeo.php

The code is listed here:
http://examples.mashupguide.net/ch10/flickrgeo.php.txt

Moreover, you will find a complete listing of the code in Chapter 13, including a
description of how it handles KML and KML network links (which is beyond what is
covered here). In this section, I’ll describe the overall structure of flickrgeo.php and
discuss some example usage.

With several exceptions, all the parameters for flickr.photos.search are also
parameters for flickrgeo.php:

 * user_id

 * tags

 * tag_mode

 * text

 * min_upload_date

 * max_upload_date

 * min_taken_date

 * max_taken_date

 * license

 * sort

 * privacy_filter

 * accuracy

 * safe_search

 * content_type

 * machine_tags

 * machine_tag_mode

 * group_id

 * place_id

 * extras

 * per_page

 * page

There are three differences between the parameters for flickr.photos.search and for
flickrgeo.php. First, the api_key is hardwired for flickrgeo.php. Second, instead of
using the single bbox parameter from flickr.photos.search to specify the bounding box
for geotagged photos, flickrgeo.php takes four parameters: lat0, lon0, lat1, and lon1
where lat0, lon0 and lat1, lon1 are, respectively, the southwest and northeast corners of
the bounding box. Hence, the value of the bbox parameter for flickr.photos.search is
{lon0},{lat0},{lon1},{lat1}.

Second, instead of using the format parameter for Flickr API methods, which takes
one of rest (the default value), xml-rpc, soap, json, or php, flickrgeo.php uses an
o_format parameter to control the output of the script. These are the values recognized
by the script:

 * rest returns the default (rest) output from the Flickr API.

 * json returns the JSON output from the Flickr API.

 * html returns an HTML form and list of photos.

 * kml returns the search results as KML (see Chapter 13 for more details).

 * nl returns the results as a KML network link (see Chapter 13 for more details).

If the o_format is not set or is equal to html, then you want to return the HTML form
and a display of the photos. If the o_format is rest, return the default output from the
Flickr API (rest). If it’s json, you want to return the JSON output with no callback.

For example, a sample invocation of this script shows the first page of geotagged
photos tagged with cat from all over the world:

http://examples.mashupguide.net/ch10/flickrgeo.php?tags=cat&lat0=-90&lon0=-
180&lat1=~CCC
90&lon1=180&page=1&per_page=10&o_format=html

If you change the o_format to json, you get JSON output:

http://examples.mashupguide.net/ch10/flickrgeo.php?tags=cat&lat0=-90&lon0=-
180&lat1=~CCC
90&lon1=180&page=1&per_page=10&o_format=json

This script generates a simple user interface so that you can test the input
parameters. That is, you can use the html interface to see what photos are coming back
and then switch the output to json, rest, kml, or nl to be used in your server-side proxy.
Much of the code is devoted to generating KML and KML network links, functionality
used in Chapter 13. There’s also some other convenience functionality: automatic form
generation, error checking, and some useful default values for the bbox parameter.
Again, consult Chapter 13 for more details.

Building a Simple Client-Side Frame
You now have flickrgeo.php, a server-side proxy for talking to Flickr. Before you turn
your attention to directly connecting Google Maps with Flickr, I’ll remind you about
two basic interactions between the DOM and JavaScript:

 * Reading and writing DOM elements, <div> elements, and form elements

 * Handling simple events to connect form input and displaying calculations

Reading and Writing Elements
In this section, I will remind you how to do some basic things in browser-based
JavaScript. Specifically, I’ll review how to manipulate certain DOM elements. This
section will seem trivial to experienced JavaScript developers, but the example provides
a starting point for the rest of the chapter.

To that end of learning some basic JavaScript techniques, create the following
HTML file:3

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>Dom Play</title>
 </head>
 <body>
 <div id="container"></div>
 </body>
</html>

Fire up the JavaScript Shell and the Firebug extension to follow what happens when
you type the following commands:
document

[object HTMLDocument]

div = document.getElementById('container')

[object HTMLDivElement]

div.innerHTML = 'hello';

hello

Notice that the word hello shows up on the web page now. You’ve just used
JavaScript to write to the DOM, specifically hello to the innerHTML of the <div> element
with the ID of container.

The next step is to write an example with an input box and a submit button. When
you hit submit, the calc_square() JavaScript function calculates the square of the
number and updates the result box (the answer span). Start with the following, though
we’ll leave the calc_square() function empty for now:4

 3. http://examples.mashupguide.net/ch10/dom.html

 4. http://examples.mashupguide.net/ch10/square1.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

 <head>
 <title>Squaring the input(square1.html)</title>
 <meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
 </head>
 <body>
 <script type="text/javascript">
 //<![CDATA[
 function calc_square() {
 }
 //]]>
 </script>
 <form action="#" onsubmit="calc_square(); return false;">
 <label>Input a number:</label>
 <input type="text" size="5" name="num" value="0" />
 <input type="submit" value="Square it!" />
 </form>
 <p>The square of the input is: 0</p>
 </body>
</html>

In the JavaScript Shell, try the following pieces of code:
document

[object HTMLDocument]

document.forms[0].innerHTML

<label>Input a number:</label><input size="5" name="num" value="0" type="text">
<input value="Square it!" type="submit">

document.forms[0].elements[0].value

0

Change the value in the text box, and try it again to see the new value reflected (note
num is the ID of the <input> element):
document.forms[0].num.value

8

The following gets you the <answer> element:
span.document.getElementById('answer')

[object HTMLSpanElement]

Finally, this will fill in 16 to the <answer> element:

span.document.getElementById('answer').innerHTML = 16

16

Handling Simple Events to Connect Form Input and Display
Calculations
Next, you’ll want to figure out how to programmatically submit the form (you’ll use this
logic later). Instead of having to hit the submit button, you will create a method that
responds to the button submission event. Remember, in the previous example, it is the
job of the calc_square() method (which was left empty) to read the input, calculate the
square of the input, and write the answer to the answer box. Let’s fill in calc_square with
something like this:5

 <script type="text/javascript">
 //<![CDATA[
 function calc_square() {
 var n = document.forms[0].num.value;
 document.getElementById('answer').innerHTML = n*n;
 }
 //]]>
 </script>
 <form action="#" onsubmit="calc_square(); return false;">
 <label>Input a number:</label>
 <input type="text" size="5" name="num" value="0" />
 <input type="submit" value="Square it!" />
 </form>
 <p>The square of the input is: 0</p>
 <script type="text/javascript">
 //<![CDATA[
 document.forms[0].num.onchange = calc_square; //register an event
 //]]>
 </script>

 5. http://examples.mashupguide.net/ch10/square2.html

Hooking the Client-Side Framework to Flickr
Now that you’ve constructed some simple JavaScript code to read form elements and do
a calculation in response to a button submission event, you’re ready to wire up a form to
use XHR to access the flickrgeo.php server-side proxy. That is, you’ll let the user fill in
new values and do the form submission by JavaScript. Once the user hits Go!, the script
returns a URL to use flickrgeo.php to search for geotagged photos. We’ll build up the
example in three steps:

 1. Translate the form parameters into a query to flickrgeo.php.

 2. Use XHR to do the request to flickrgeo.php and display the resulting JSON
response.

 3. Translate that JSON into HTML for display.

Let’s start with the following:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>flickrgeo.1.html</title>
 <meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
 </head>
 <body>
 <script type="text/javascript">
 //<![CDATA[
 function get_pictures() {
 /*
 We're aiming for the following:
 flickrgeo.php?tags=flower&lat0=-90&lon0=-180&lat1=90&lon1=180&page=1~CCC
&per_page=10&o_format=json
 */
 }
 //]]>
 </script>
 <form action="#" onsubmit="get_pictures(); return false;">
 <label>Search for photos with the following tag:</label>
 <input type="text" size="20" name="tag" value="flower" />
 <label> located at: lat0,lon0,lat1,lon1:</label>
 <input type="text" size="10" name="lat0" value="-90.0" />
 <input type="text" size="10" name="lon0" value="-180.0" />
 <input type="text" size="10" name="lat1" value="90.0" />
 <input type="text" size="10" name="lon1" value="180.0" />
 <label>at page</label>
 <input type="text" size="4" name="page" value="1" />
 <label>with</label>
 <input type="text" size="3" name="per_page" value="1" />
 <label> per page.</label>
 <button type="submit">Go!</button>
 </form>
 <div id="pics"></div>
 </body>
</html>

Writing a URL for Querying flickrgeo.php
Your goal is to figure out how to fill in get_pictues() to translate the input parameters
from the form into a URL of the correct form. Here’s one possible approach:6

 <script type="text/javascript">
 //<![CDATA[
 function get_pictures() {
 // flickrgeo.php?tags=flower&lat0=-90&lon0=-
180&lat1=90&lon1=180&page=1&per_page
 // =10&o_format=json
 var s = "";
 f = document.forms[0].getElementsByTagName('input'); // get all input
fields

 for (i = 0; i < f.length; i++)
 if (i < f.length - 1) {
 s = s + f[i].name + "=" + escape(f[i].value) + "&";
 } else {
 s = s + f[i].name + "=" + escape(f[i].value);
 }
 var url = "flickrgeo.php?" + s + "&o_format=json";
 document.getElementById('pics').innerHTML = "URL";
 }
 //]]>
 </script>

The get_pictures function iterates through all the <input> tags in the form,
extracting the name and value of each tag, out of which to create a URL (with
parameters) to flickrgeo.php. This URL is an HTTP GET request for JSON-formatted
results for the given parameters.

Using XHR via the YUI Connection Manager to Read the JSON
The next step is to actually grab the JSON that is available at the URL. Using what you
learned earlier (in the section “What Happens with XHR and Direct API Calls”), let’s
use the YUI Connection Manager to call flickrgeo.php and display the raw JSON:7

 6. http://examples.mashupguide.net/ch10/flickrgeo.1.html

 7. http://examples.mashupguide.net/ch10/flickrgeo.2.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>flickrgeo.2.html</title>
 <meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
 <script type="text/javascript" src="/lib/yui/build/yahoo/yahoo.js"></script>
 <script type="text/javascript" src="/lib/yui/build/event/event.js"></script>
 <script type="text/javascript"
src="/lib/yui/build/connection/connection.js">
 </script>
 </head>
 <body>
 <script type="text/javascript">
 //<![CDATA[

 var handleSuccess = function(o){

 div = document.getElementById('pics');
 div.innerHTML = ""; // blank out the div

 if(o.responseText !== undefined){

 div.innerHTML += "Server response: " + o.responseText + "
";
 }

 }

 var handleFailure = function(o){
 if(o.responseText !== undefined){
 alert("failure");
 }
 }

 var callback =
 {
 success:handleSuccess, failure: handleFailure, argument: {}
 };

 function get_pictures() {
 // flickrgeo.php?tags=flower&lat0=-90&lon0=-
180&lat1=90&lon1=180&page=1&per_page
 // =10&o_format=json
 var s = "";
 f = document.forms[0].getElementsByTagName('input'); // get all input
fields
 for (i = 0; i < f.length; i++)
 if (i < f.length - 1) {
 s = s + f[i].name + "=" + escape(f[i].value) + "&";
 } else {
 s = s + f[i].name + "=" + escape(f[i].value);
 }
 var url = "flickrgeo.php?" + s + "&o_format=json";
 var request = YAHOO.util.Connect.asyncRequest('GET', url, callback);

 }
 //]]>
 </script>
 <form action="#" onsubmit="get_pictures(); return false;">
<label>Search for photos with the following tag:</label>
<input type="text" size="20" name="tags" value="flower" />
<label> located at: lat0,lon0,lat1,lon1:</label>
<input type="text" size="10" name="lat0" value="-90.0" />
<input type="text" size="10" name="lon0" value="-180.0" />
<input type="text" size="10" name="lat1" value="90.0" />
<input type="text" size="10" name="lon1" value="180.0" />
<label>at page</label><input type="text" size="4" name="page" value="1" />
<label>with</label>
<input type="text" size="3" name="per_page" value="1" /><label> per
page.</label>
<button type="submit">Go!</button>
 </form>
 <div id="pics"></div>
 </body>
</html>

Note what was added:

 * <script> elements to include the relevant parts of the Yahoo! UI Library to enable
the use of the Connection Manager.

 * The definition of callback functions (handleSuccess and handleFailure), which are
referenced by the callback object, to handle successful and failed calls,
respectively, to flickrgeo.php. If the call is successful, the JSON output from
flickrgeo.php is written into the <div id="pics"></div>.

 * A call to the Yahoo! Connection Manager in the line var request =
YAHOO.util.Connect.asyncRequest('GET', url, callback);. Remember that an
HTTP GET request is made to url and the HTTP response is fed to the functions
contained in the callback object.

Converting the JSON to HTML
The next step is to convert the JSON input to HTML so that you can use it to display the
photos. Note how you can use eval() to convert the JSON coming back from Flickr to a
JavaScript object because you trust the source of this JSON. An alternative to eval() is
JSON stringify().8

Here’s some code:9

 8. http://www.json.org/js.html

 9. http://examples.mashupguide.net/ch10/flickrgeo.3.html

 <body>
 <script type="text/javascript">
 //<![CDATA[

 function rspToHTML(rsp) {
 var s = "";
 // http://farm{farm-id}.static.flickr.com/{server-
id}/{id}_{secret}_[mstb].jpg
 // http://www.flickr.com/photos/{user-id}/{photo-id}
 s = "total number is: " + rsp.photos.photo.length + "
";

 for (var i=0; i < rsp.photos.photo.length; i++) {
 photo = rsp.photos.photo[i];
 t_url = "http://farm" + photo.farm + ".static.flickr.com/" +
photo.server +
 "/" + photo.id + "_" + photo.secret + "_" + "t.jpg";
 p_url = "http://www.flickr.com/photos/" + photo.owner + "/" + photo.id;
 s += '' + '<img alt="'+ photo.title + '"src="'
+
 t_url + '"/>' + '';
 }
 return s;
 }

 var handleSuccess = function(o){
 div = document.getElementById('pics');
 div.innerHTML = ""; // blank out the div

 if(o.responseText !== undefined){
 div.innerHTML += "Server response: " + o.responseText + "
";

 //let's deposit the response in a global variable
 //so that we can look at it via the shell.

 window.response = o.responseText;
 window.rsp = eval('(' + o.responseText + ')');
 div.innerHTML = rspToHTML(window.rsp);
 }
 }

 var handleFailure = function(o){
 ...
 }

 var callback =
 {
 ...
 };

 function get_pictures() {

 ...
 }
 //]]>
 </script>
 <form action="#" onsubmit="get_pictures(); return false;">
 ...
 </form>
 <div id="pics"></div>
 </body>

You now have a client-side form that uses XHR to query the Flickr API, get back
results in JSON, convert the JSON to HTML, and insert that HTML into the page—
without a page reload (see Figure 10-1). The next steps are to integrate these results
with Google Maps—the work of the next section.

Insert 858Xf1001.tif

Figure 10-1. Results of flickrgeo.3.html. Geotagged photos are displayed as HTML in
response to the XHR request.

Mashing Up Google Maps API with Flickr
You now have all the pieces needed to finish up the Flickr and Google Maps mashup.
Here’s a step-by-step walk-through of the big steps:

 1. Set up a basic Google map.

 2. Have the map respond to changes in the viewport of the map.

 3. Bring together Flickr and GMap into the same HTML page by combining the
code into one file—the two pieces are just together but don’t interact.

 4. Wire up the bounding box of the Google map to be the source of the lat/long
coordinates.

 5. Write the coordinates into the lat0/lon0 and lat1/lon1 boxes.

 6. Make the pictures show up in the map.

Setting Up a Basic Google Map
To start with, let’s just get a simple Google map set up by using the Google Maps API
(which you learned about in Chapter 8):

 1. Make sure you have the Google Maps key needed for your domain. The domain I
have is http://examples.mashupguide.net/ch10. You can calculate the
corresponding API key:

http://www.google.com/maps/api_signup?url=http%3A%2F%2Fexamples.mashup~CCC
guide.net%2Fch10

 2. Copy the following code, substituting your key, to get a map centered on UC
Berkeley with the size, map-type control, and keyboard handlers (you can use the
arrow keys to control the map):10

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8"/>
 <title>Google Maps JavaScript API Example</title>
 <script src="http://maps.google.com/maps?file=api&v=2&key=~CCC
[API_KEY]"
 type="text/javascript"></script>
 <script type="text/javascript">

 //<![CDATA[

 function load() {
 if (GBrowserIsCompatible()) {
 var map = new GMap2(document.getElementById("map"));
 window.map = map;
 map.setCenter(new GLatLng(37.872035,-122.257844), 13);
 map.addControl(new GSmallMapControl());
 map.addControl(new GMapTypeControl());
 }
 }

 //]]>
 </script>
 </head>
 <body onload="load()" onunload="GUnload()">
 <div id="map" style="width: 800px; height: 600px"></div>
 </body>
</html>

10. http://examples.mashupguide.net/ch10/gmap.1.html

Making the Map Respond to Changes in the Viewport of the Map
The next thing to pull off is to have the map respond to changes in the viewport of the
map (that is, when the user has panned or zoomed the map). The mechanism to use is
Google Maps events:
http://www.google.com/apis/maps/documentation/#Events_overview

You can get a list of supported events here:
http://www.google.com/apis/maps/documentation/reference.html#GMap2

The relevant event we need here is the moveend event, the one that is fired once the
viewport of the map has stopped changing (as opposed to the move event, which is fired
during the changing of the viewport). To see this event in action, load the Google map
you just created and use the JavaScript Shell to add a listener for the moveend event:
onMapMoveEnd = function () {alert("You moved or zoomed the map");}

function () { alert("You moved or zoomed the map"); }

GEvent.addListener(map,'moveend', onMapMoveEnd);

[object Object]

With that event listener added, every time you finish panning or zooming the map,
an alert box pops up with the message “You moved or zoomed the map.”

Let’s now write some code that displays the bounding box in a <div> element,
updating this information every time the map is moved. We are doing this as a stepping-
stone to feeding the bounding box information to flickrgeo.php. Here’s the code:11

11. http://examples.mashupguide.net/ch10/gmap.2.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8"/>
 <title>gmap.2.html</title>
 <script src="http://maps.google.com/maps?file=api&v=2&key=[API_KEY]"
 type="text/javascript"></script>
 <script type="text/javascript">

 //<![CDATA[

 function updateStatus() {
 var div = document.getElementById('mapinfo');
 div.innerHTML = map.getBounds();
 return (1);
 }

 function onMapMove() {

 updateStatus();

 }

 function onMapZoom(oldZoom, newZoom) {

 updateStatus();
 }

 function load() {
 if (GBrowserIsCompatible()) {
 var map = new GMap2(document.getElementById("map"));
 window.map = map;
 map.setCenter(new GLatLng(37.872035,-122.257844), 13);
 map.addControl(new GSmallMapControl());
 map.addControl(new GMapTypeControl());
 window.kh = new GKeyboardHandler(map);

 GEvent.addListener(map,'moveend',onMapMove);
 GEvent.addListener(map,'zoomend',onMapZoom);
 updateStatus();
 }
 }

 //]]>
 </script>
 </head>

 <body onload="load()" onunload="GUnload()">
 <div id="map" style="width: 800px; height: 600px"></div>
 <div id="mapinfo"></div>
 </body>
</html>

Bringing Together the Flickr and GMap Code
At this point, you are now ready to bring together the Flickr elements (the input form
hooked up to flickrgeo.php) and the Google map. The first thing to do is to display the
two parts on the same page without having them interact. Getting things displaying side
by side ensures that you have the proper dependencies worked out. Once you get there,
then you can wire the two pieces together. The first thing to do is to copy and paste code
from your Flickr code and GMap code into one file. Here is one possible way to do it:
http://examples.mashupguide.net/ch10/gmapflickr1.html

Wiring Up the Bounding Box of the Google Map
Let’s get some interaction going between the Flickr parts and the Google map, now that
they are contained in the same HTML page. Let’s wire up the bounding box of the
Google map to be the source of the lat/long coordinates. Now, when you move or zoom
the Google map, the new coordinates are written into the form elements (the lat0/lon0
and lat1/lon1 boxes) for the Flickr search.12

12. http://examples.mashupguide.net/ch10/gmapflickr2.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <title>gmapflickr.2.html</title>
 <script src="http://maps.google.com/maps?file=api&v=2&key=[API_KEY]"
 type="text/javascript"></script>
 <script type="text/javascript">

 //<![CDATA[

 function updateStatus() {
 var div = document.getElementById('mapinfo');
 div.innerHTML = map.getBounds();

 document.forms[0].lat0.value = map.getBounds().getSouthWest().lat();
 document.forms[0].lon0.value = map.getBounds().getSouthWest().lng();
 document.forms[0].lat1.value = map.getBounds().getNorthEast().lat();
 document.forms[0].lon1.value = map.getBounds().getNorthEast().lng();

 get_pictures();
 }

 function onMapMove() {
 updateStatus();
 }

 function onMapZoom(oldZoom, newZoom) {
 updateStatus();
 }

 function load() {

 ...
 }

 //]]>
 </script>
 <script type="text/javascript" src="/lib/yui/build/yahoo/yahoo.js"></script>
 <script type="text/javascript" src="/lib/yui/build/event/event.js"></script>
 <script type="text/javascript"
 src="/lib/yui/build/connection/connection.js"></script>
 <script type="text/javascript">
 //<![CDATA[
 function rspToHTML(rsp) {
 var s = "";
 // http://farm{farm-id}.static.flickr.com/{server-
id}/{id}_{secret}_[mstb].jpg
 // http://www.flickr.com/photos/{user-id}/{photo-id}
 s = "total number available is: " + rsp.photos.total + "
";

 for (var i=0; i < rsp.photos.photo.length; i++) {
 photo = rsp.photos.photo[i];

 t_url = "http://farm" + photo.farm + ".static.flickr.com/" +
photo.server +
 "/" + photo.id + "_" + photo.secret + "_" + "t.jpg";
 p_url = "http://www.flickr.com/photos/" + photo.owner + "/" + photo.id;
 s += '' + '<img alt="'+ photo.title + '"src="'
+
 t_url + '"/>' + '';
 }
 return s;
 }

 var handleSuccess = function(o){

 ...
 }
 }

 var handleFailure = function(o){

 ...
 }

 var callback =
 {
 ...
 };

 function get_pictures() {

 ...
 }
 //]]>
 </script>
 </head>

 <body onload="load()" onunload="GUnload()">
 <form action="#" onsubmit="get_pictures(); return false;">
 <label>Search for photos with the following tag:</label>
 <input type="text" size="20" name="tags" value="flower" />
 <label> located at: lat0,lon0,lat1,lon1:</label>
 <input type="text" size="10" name="lat0" value="-90.0" />
 <input type="text" size="10" name="lon0" value="-180.0" />
 <input type="text" size="10" name="lat1" value="90.0" />
 <input type="text" size="10" name="lon1" value="180.0" />
 <label>at page</label><input type="text" size="4" name="page" value="1" />
 <label>with</label>
 <input type="text" size="3" name="per_page" value="1" />
 <label> per page.</label>
 <button type="submit">Go!</button>
 </form>
 <div id="pics"></div>
 <div id="map" style="width: 800px; height: 600px"></div>
 <div id="mapinfo"></div>
 </body>

</html>

Note that as soon as the page is loaded, the load function is called, which in turn
calls updateStatus. The result is a search for photos using the starting parameters in the
form. That is, geotagged photos tagged with flower are retrieved and displayed. You can
change the starting photos by changing the default value for the <input> element to tags.

Making the Pictures Show Up in the Map
In this section, you’ll complete the wiring between the Flickr results and the map. I’ll
show you how to display the images in the list on the map. This is done by creating
markers for each of the photos and adding those markers as overlays to the map. That
involves generating HTML to put into the markers.

I’ll remind you how to add overlays to a Google map using the API:

point = new GLatLng (37.87309185260284, -122.25508689880371);
marker = new GMarker(point);
map.addOverlay(marker);

Here’s the code with the new stuff in bold (see Figure 10-2):13

13. http://examples.mashupguide.net/ch10/gmapflickr.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <title>gmapflickr.html</title>
 <script src="http://maps.google.com/maps?file=api&v=2&key=[API_KEY]"
 type="text/javascript"></script>
 <script type="text/javascript">

 //<![CDATA[
 // set up a blank object to hold markers that are added to the map
 markersInMap = {}

 function updateStatus() {
 var div = document.getElementById('mapinfo');
 div.innerHTML = map.getBounds();

 document.forms[0].lat0.value = map.getBounds().getSouthWest().lat();
 document.forms[0].lon0.value = map.getBounds().getSouthWest().lng();
 document.forms[0].lat1.value = map.getBounds().getNorthEast().lat();
 document.forms[0].lon1.value = map.getBounds().getNorthEast().lng();

 get_pictures();
 }

 // Creates a marker at the given point with the given msg.
 function createMarker(point, msg) {
 var marker = new GMarker(point);
 GEvent.addListener(marker, "click", function() {
 marker.openInfoWindowHtml(msg);
 });

 return marker;
 }

 function photos_to_markers(rsp) {

 // loop through the photos
 for (var i=0; i < rsp.photos.photo.length; i++) {
 var photo = rsp.photos.photo[i];
 // check whether marker already exists
 if (!(photo.id in markersInMap)) {
 var point = new GLatLng (photo.latitude, photo.longitude);
 var msg = photo.title + "
" + genPhotoLink(photo);
 map.addOverlay(createMarker(point, msg));
 markersInMap[photo.id] = ""; // don't know what to store so far.
 }
 }
 }

 function onMapMove() {
 updateStatus();
 }

 function onMapZoom(oldZoom, newZoom) {
 updateStatus();
 }

 function load() {

 ...
 }

 //]]>
 </script>
 <script type="text/javascript" src="/lib/yui/build/yahoo/yahoo.js"></script>
 <script type="text/javascript" src="/lib/yui/build/event/event.js"></script>
 <script type="text/javascript"
 src="/lib/yui/build/connection/connection.js"></script>
 <script type="text/javascript">
 //<![CDATA[

 function genPhotoLink(photo) {
 var t_url = "http://farm" + photo.farm + ".static.flickr.com/" +
 photo.server + "/" + photo.id + "_" + photo.secret + "_" + "t.jpg";
 var p_url = "http://www.flickr.com/photos/" + photo.owner + "/" +
photo.id;

 return '' + '<img alt="'+ photo.title + '"src="'
+
 t_url + '"/>' + '';
 }

 function rspToHTML(rsp) {

 ...

 }

 var handleSuccess = function(o){
 div = document.getElementById('pics');
 div.innerHTML = ""; // blank out the div

 if(o.responseText !== undefined){
 //let's deposit the response in a global variable
 //so that we can look at it via the shell.
 window.response = o.responseText;
 window.rsp = eval('(' + o.responseText + ')');
 div.innerHTML = rspToHTML(window.rsp);
 photos_to_markers(window.rsp);
 }
 }

 var handleFailure = function(o){

 ...
 }

 var callback =
 {
 ...
 };

 function get_pictures() {

 ...
 }
 //]]>
 </script>
 </head>

 <body onload="load()" onunload="GUnload()">
 <form action="#" onsubmit="get_pictures(); return false;">
 <label>Search for photos with the following tag:</label>
 <input type="text" size="20" name="tags" value="flower" />
 <label> located at: lat0,lon0,lat1,lon1:</label>
 <input type="text" size="10" name="lat0" value="-90.0" />
 <input type="text" size="10" name="lon0" value="-180.0" />
 <input type="text" size="10" name="lat1" value="90.0" />
 <input type="text" size="10" name="lon1" value="180.0" />
 <label>at page</label><input type="text" size="4" name="page" value="1" />
 <label>with</label>
 <input type="text" size="3" name="per_page" value="1" />
 <label> per page.</label>
 <button type="submit">Go!</button>
 </form>
 <div id="pics"></div>
 <div id="map" style="width: 800px; height: 600px"></div>
 <div id="mapinfo"></div>
 </body>
</html>

Insert 858Xf1002.tif

Figure 10-2. The Flickr Google Maps mashup

This is just a beginning of a mashup between Flickr geotagged photos and Google
Maps. Some ideas for elaborating this mashup include the following:

 * Refining the look and feel of the mashup (including removing <div
id="mapinfo">, which currently displays the bounding box of the map)

 * Dealing with the fact that clicking a marker and its consequent window opening
moves the map

 * Clustering photos that are at the same location (as is done in the Flickr map
interface)

Google Mapplet That Shows Flickr Photos
In addition to the Google Maps API, which allows a developer to embed Google Maps
on a third-party site, Google recently introduced Google Mapplets as a way of adding
extensions to Google Maps directly as little applications that run in a side panel. (Any
mapplet you install and turn on interacts with the same map. For example, if you are
using a mapplet for displaying flower shops and another one that displays restaurants,
the resulting Google map shows both flower shops and restaurants.) You can find
developer information here:
http://www.google.com/apis/maps/documentation/mapplets/

In this section, I’ll show you how to create a basic mapplet to display Flickr
geotagged photos. Mapplets are a combination of JavaScript and HTML, embedded in
an XML file. The methods you use are similar but not identical to those found in the
Google Maps API, and there’s no need to write any server-side components. The
Mapplets API provides wrappers for XHR that talk to the Google servers (which in turn
act like server-side proxies that we wrote in PHP).

You can find the source for a mapplet that allows users to search for Flickr pictures
of a certain tag here:
http://examples.mashupguide.net/ch10/flickr.mapplet.xml

Add the mapplet to your collection of maps. (See “Adding a Google Mapplet to
Your Google My Maps.”)

ADDING A GOOGLE MAPPLET TO YOUR GOOGLE MY MAPS

 1. Go to http://maps.google.com/, and log in to Google Maps if you are not already logged in.

 2. Click the My Maps tab.

 3. Click Browse the Directory button or link.

 4. Click the Add by URL link to the right of the Search Google Maps Content button.

 5. Enter the URL of the mapplet source (for example,
http://examples.mashupguide.net/ch10/flickr.mapplet.xml), and hit the Add
button.

 6. Click Back to Google Maps.

 7. Now you should now see on the My Maps tab under Created by Others a map called “Flickr
Geotagged Photos.” You can use the check box to turn it off and on.

Figure 10-3 shows the mapplet in action.

Insert 858Xf1003.tif

Figure 10-3. The Flickr Google Maps mapplet mashup

The source is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<Module>
<ModulePrefs title="Flickr Geotagged Photos"
 description="Show Flickr photos"
 author="Raymond Yee"
 author_email="raymondyee@mashupguide.net"
 height="150">
 <Require feature="sharedmap"/>
</ModulePrefs>
<Content type="html"><![CDATA[

<script>

 var map = new GMap2();
 var border = null;

function genPhotoLink(photo) {
 var t_url = "http://farm" + photo.farm + ".static.flickr.com/" +
photo.server +
 "/" + photo.id + "_" + photo.secret + "_" + "t.jpg";
 var p_url = "http://www.flickr.com/photos/" + photo.owner + "/" + photo.id;

 return '' + '<img alt="'+ photo.title + '"src="' +
 t_url + '"/>' + '';
}

// Creates a marker at the given point with the given msg.
function createMarker(point, msg) {
 var marker = new GMarker(point);
 GEvent.addListener(marker, "click", function() {
 marker.openInfoWindowHtml(msg);
 });
 return marker;
}

function createMarkerAndDiv (point,msg) {
 var marker, e, anchors, alink

 marker = createMarker(point, msg);
 e = document.createElement("div");

 e.innerHTML = msg + "Show
"
 anchors = e.getElementsByTagName('a')
 alink = anchors[anchors.length-1];
 alink.onclick = function(){marker.openInfoWindowHtml(msg);}

 return [marker,e];
}

function cb(s) {
 var rsp = eval('(' + s + ')');
 var marker, e

 // clear the photos
 map.clearOverlays();

 // add border
 map.addOverlay(border);

 var pdiv = document.getElementById("pictures");
 pdiv.innerHTML = "Total number available is: " + rsp.photos.total +
"
";;

 // put the pictures on the map
 for (var i=0; i < rsp.photos.photo.length; i++) {
 var photo = rsp.photos.photo[i];

 var point = new GLatLng (photo.latitude, photo.longitude);
 var msg = photo.title + "
" + genPhotoLink(photo);

 md = createMarkerAndDiv(point,msg);
 marker = md[0];
 e=md[1];

 map.addOverlay(marker);
 pdiv.appendChild(e);
 }
}

function get_pictures() {
 var API_KEY = "[API_KEY]";
 fForm = document.getElementById('FlickrForm');

 map.getBoundsAsync(function(bounds) {
 var lat0 = bounds.getSouthWest().lat();
 var lon0 = bounds.getSouthWest().lng();
 var lat1 = bounds.getNorthEast().lat();
 var lon1 = bounds.getNorthEast().lng();

 // add polyline to mark the search boundaries
 border = new GPolygon([

 new GLatLng(lat0, lon0),
 new GLatLng(lat1, lon0),
 new GLatLng(lat1, lon1),
 new GLatLng(lat0,lon1),
 new GLatLng(lat0,lon0)
], "#ff0000", 2);

 var url =
"http://api.flickr.com/services/rest/?method=flickr.photos.search" +
 "&api_key=" + API_KEY +
 "&bbox=" + lon0 + "%2C" + lat0 + "%2C" + lon1 + "%2C" + lat1 +
 "&per_page=" + fForm.per_page.value +
 "&page=" + fForm.page.value +
 "&format=json&nojsoncallback=1&extras=geo";

 var tagValue = fForm.tag.value;
 // search by tag only if the box is not blank.
 if (tagValue.length) {
 url = url + "&tags=" + fForm.tag.value;
 } else {
 url = url + "&min_upload_date=820483200";
 }

 _IG_FetchContent(url, cb);

 } //anonymous function
); //map.getBoundsAsync

} //get_pictures

</script>

<form action="#" onsubmit="get_pictures(); return false;" id="FlickrForm">
 <p>Search for photos with the following tag:
 <input type="text" size="20" name="tag" value="flower">
 at page <input type="text" size="4" name="page" value="1"> with
 <input type="text" size="3" name="per_page" value="10"> per page.
 <button type="submit">Go!</button></p>
</form>
<div id="pictures"></div>

]]></Content>
</Module>

A few words about the logic of this code:

 * This code is compact partly because the _IG_FetchContent() method makes
accessing the Flickr API fairly straightforward because you can code the URL
directly to the Flickr API instead of having to create your own server-side proxy
(such as flickrgeo.php).

 * Mapplets do not provide much room to display content in the sidebar. Hence, the
mapplet can be better optimized to make use of the small space.

Summary
In this chapter, you learned how to create a mashup of two different APIs, the Flickr
API and the Google Maps API, to display geotagged Flickr photos on a Google map.
After reviewing geotagging in Flickr, you learned how to access XML web services
using the XMLHttpRequest browser object (XHR) and deal with security constraints in the
browser by creating server-side proxies to access web services. You then looked at how
to use flickrgeo.php, a server-side proxy to search photos in Flickr. You then set up a
simple client-side framework that we transformed one step at a time into a mashup
between Flickr and Google Maps. Finally, you refactored that work into a Flickr/Google
mapplet to create a pure client-side solution.

Although this chapter focused on Flickr and Google Maps, what you learned in this
chapter can be generalized for other mashups. For instance, you’ll continue to see
repeated interactions between server-side and client-side components. Building mashups
in controlled steps, adding functionality one piece at a time, is a good way to work.
Frameworks such as Google Mapplets let you write widgets in HTML and JavaScript by
providing server-side proxies to access web services from other parties (such as the
_IG_FetchContent() method in Google Mapplets).

When creating mashups, you are often faced with issues of “impedance
matching”—that is, how to translate information from one source into a form that is
usable by the consumer of that information. In this chapter, we focused on extracting
geocoding information from Flickr and then translating it for use by Google Maps. Data
flow went the other way too: how to get the viewport of the Google map to define the
bounding box for a query for geotagged photos in Flickr. You will see the need to deal
with impedance matching throughout the rest of the book.

	The Design
	Background: Geotagging in Flickr
	Background: XMLHttpRequest and Containing Libraries
	Using XMLHttpRequest Directly
	Using the YUI Connection Manager

	Building a Server-Side Proxy
	What Happens with XHR and Direct API Calls?
	Building a Server-Side Script for Geolocated Photos

	Building a Simple Client-Side Frame
	Reading and Writing Elements
	Handling Simple Events to Connect Form Input and Display Calculations

	Hooking the Client-Side Framework to Flickr
	Writing a URL for Querying flickrgeo.php
	Using XHR via the YUI Connection Manager to Read the JSON
	Converting the JSON to HTML

	Mashing Up Google Maps API with Flickr
	Setting Up a Basic Google Map
	Making the Map Respond to Changes in the Viewport of the Map
	Bringing Together the Flickr and GMap Code
	Wiring Up the Bounding Box of the Google Map
	Making the Pictures Show Up in the Map

	Google Mapplet That Shows Flickr Photos
	Summary

