
CHAPTER 7

Exploring Other Web APIs
In Chapter 6, you examined the Flickr API in great detail, so I’ll turn now to other web
APIs. Studying the Flickr API in depth is obviously useful if you plan to use it in your
mashups, but I argue here that it’s useful in your study of other APIs because you can
draw from your understanding of the Flickr API as a point of comparison. (I’ll cover the
subject of HTTP web APIs bound to a JavaScript context in the next chapter. You’ll
take what you learn in Chapter 6 and this chapter and study the specific context of
working within the modern web browser using JavaScript.)

How do you generalize from what you know about the Flickr API to other web
APIs? I will use three major axes/categories for organizing my presentation of web
APIs. (I’m presenting some heuristics for thinking about the subject rather than a
watertight formula. This scheme won’t magically enable you to instantly understand all
the various APIs out there.) The categories I use are as follows:

 * The protocols used by the API. Some questions that I’ll discuss include the
following: Is the API available with a REST interface? Does it use SOAP or
XML-RPC?

 * The popularity or influence of the API. It’s helpful to understand some of the
more popular APIs because of their influence on the field in general and also
because popularity is an indicator of some utility. We’ll look at how you might
figure out what’s popular.

 * The subject matter of the APIs. Since APIs are often tied to specific subject
matter, you’ll naturally need to understand the basics of the subject to make sense
of the APIs. What are some of those subject areas?

It doesn’t take being too long in the field of web services to hear about REST vs.
SOAP as a great divide—and hence the impetus for classifying web services by the
protocols used. You already saw the terms REST and SOAP (as well as XML-RPC) in
Chapter 6 to describe the request and response formats available to developers of the
Flickr API. I focused on the Flickr REST formats because they are not only the easiest
ones to work with but also they are the ones that are most helpful for learning other
APIs.

In this chapter, I’ll cover what XML-RPC and SOAP are about. Understanding just
Flickr’s REST request/response structure can get you far—but there are web APIs that
have only XML-RPC or SOAP interfaces. So, I’ll start by discussing XML-RPC and
SOAP and show you the basics of how to use those two protocols. Also, I’ll lay out tips
for dealing with the practical complexities that sometimes arise in consuming SOAP
services.

Note The term REST (an acronym for Representational State Transfer) was coined by Roy Fielding to

describe a set of architectural principles for networks. In Fielding’s usage, REST is not specifically tied to
HTTP or the Web. At the same time, a popular usage has arisen for REST to refer to exchanging
messages over HTTP without using such protocols as SOAP and XML-RPC, which introduce an additional
envelope around these messages. These two different usages of the term REST have caused confusion
since it is possible to use HTTP to exchange messages without additional envelopes in a way that
nonetheless does not conform to REST principles. If a creator of a service associates the service with the
term REST (such as the Flickr REST interface), I will also refer to it as REST in this chapter.

Once you have a good understanding of the protocols and architectural issues
behind HTTP web services, you’re in a good position to consume any web API you
come across—at least on a technical level. You still have to understand what a service is
about and which services you might want to use. I will cover how to use
Programmableweb.com as a great resource to learn about APIs in general.
Programmableweb.com helps you understand which are the popular APIs as well as
how APIs can be categorized by subject matter. I conclude the chapter with a study of
two APIs: the API for YouTube as a simple REST interface and the Blogger API as a
specific case of an entire class of APIs that share a uniform interface based on a strict
usage of the HTTP methods.

XML-RPC
Although Flickr provides the option of using the XML-RPC and SOAP request and
response formats in addition to REST, I wrote all my examples using the Flickr REST
request format in Chapter 6. I’ll show you how to use the XML-RPC protocol in this
section and cover SOAP in the following section.

Tip Before taking on this section, it might be helpful to review Chapter 6’s “A Refresher on HTTP”
section and remind yourself of the structure of an HTTP request and response and the variety of HTTP
request methods.

XML-RPC is defined at http://www.xmlrpc.com/ as “remote procedure calling using
HTTP as the transport and XML as the encoding.” XML-RPC specifies how to form
remote procedure calls in terms of requests and responses, each of which has parameters
composed of some basic data types. There are XML-RPC libraries written in many
languages, including PHP and Python.

A central point of having an XML-RPC interface for a web API is akin to that of an
API kit—getting an interface that is a closer fit to the native structures and found in the
programming language you are using. Let’s consider a specific example to make this
point.

Recall from Chapter 6 how to use the Flickr REST interface to search for public
photos. You do an HTTP GET request on the following URL:
http://api.flickr.com/services/rest/?method=flickr.test.echo&api_key={api-key}

and parse the resulting XML (using, say, the libcurl and simpleXML libraries in PHP).
Let’s see how you do the same query using XML-RPC in Python and PHP for

comparison. In Python, you can use xmlrpclib, which is part of the standard Python
distribution and is documented at
http://docs.python.org/lib/module-xmlrpclib.html

Here’s a program to illustrate how to make a call to Flickr: one to
flickr.search.photos. Note how parameters are passed in and how you can use the
ElementTree library to parse the output. To use the xmlrpclib to make this call, you need
to know that the XML-RPC server endpoint URL is as follows:
http://api.flickr.com/services/xmlrpc/

and you need to name your parameters and stick them into a dictionary. When I ran the
following:

API_KEY = "[API-KEY]"

from xmlrpclib import ServerProxy, Error, Fault
server = ServerProxy("http://api.flickr.com/services/xmlrpc/")

try:
 from xml.etree import ElementTree as et
except:
 from elementtree import ElementTree as et

call flickr.search.photos

args = {'api_key': API_KEY, 'tags':'flower', 'per_page':3}
try:
 rsp = server.flickr.photos.search(args)
except Fault, f:
 print "Error code %s: %s" % (f.faultCode, f.faultString)

show a bit of XML parsing using elementtree
useful examples: http://www.amk.ca/talks/2006-02-07/
context page for photo: http://www.flickr.com/photos/{user-id}/{photo-id}

fixes parsing errors when accented characters are present
rsp = rsp.encode('utf-8')
print rsp
tree = et.XML(rsp)
print "total number of photos: %s" %(tree.get('total'))
for p in tree.getiterator('photo'):
 print "%s: http://www.flickr.com/photos/%s/%s" % (p.get("title"), ~CCC
p.get("owner"), p.get("id"))

I got this:

<photos page="1" pages="485798" perpage="3" total="1457392">
 <photo id="1236197537" owner="7823684@N06" secret="f58310acf3"
 server="1178" farm="2" title="Rainbow over flower" ispublic="1"
 isfriend="0" isfamily="0" />
 <photo id="1236134903" owner="27238986@N00" secret="fa461fb8e3" server="1036"
 farm="2" title="Watercolor" ispublic="1" isfriend="0"
 isfamily="0" />
 <photo id="1237043346" owner="33121739@N00" secret="7a116ff4af" server="1066"

 farm="2" title="Flowers" ispublic="1" isfriend="0" isfamily="0" />
</photos>

total number of photos: 1457392
Rainbow over flower: http://www.flickr.com/photos/7823684@N06/1236197537
Watercolor: http://www.flickr.com/photos/27238986@N00/1236134903
Flowers: http://www.flickr.com/photos/33121739@N00/1237043346

Note how the xmlrpclib library takes care of packaging the response and sending
you back the XML payload (which doesn’t have the <rsp> root node that is in the Flickr
REST response). However, you still have to parse the XML payload. Whether using
XML-RPC or REST is more convenient, you can judge for yourself.

Let’s take a look at how some PHP code looks. There are two major PHP libraries
for XML-RPC:

 * http://phpxmlrpc.sourceforge.net/

 * http://pear.php.net/package/XML_RPC/

Here I show how to use the PEAR::XML_RPC package. You can install it using PEAR:
pear install XML_RPC

The following program shows how to use PEAR::XML-RPC to do a number of things:

 * You can retrieve the current time by making a call that requires no parameters
(currentTime.getCurrentTime) from http://time.xmlrpc.com.

 * In search_example(), you can make a specific call to flickr.photos.search.

 * The class flickr_client shows how to generalize search_example() to handle
more of the Flickr methods.

Here’s the program:

<?php

// flickr_xmlrpc.php
// This code demonstrates how to use XML-RPC using the PEAR::XML-RPC library.
// gettime() is the simple example that involves
// calling a timeserver without passing in any parameters.
// search_example() shows a specific case of how to pass in some parameters
// for flickr.photos.search
// the flickr_client class generalizes search_example() to handle Flickr methods
// in general.

require_once('XML/RPC.php');
$API_KEY ='[API-KEY]';

function process_xmlrpc_resp($resp) {
 if (!$resp->faultCode()) {
 $val = $resp->value()->scalarval();
 return $val;
 } else {
 $errormsg = 'Fault Code: ' . $resp->faultCode() . "\n" . 'Fault Reason: ' .

 $resp->faultString() . "\n";
 throw new Exception ($errormsg);
 }
}

class flickr_client {

 protected $api_key;
 protected $server;

 public function __construct($api_key, $debug) {
 $this->api_key = $api_key;
 $this->server =
 new XML_RPC_Client('/services/xmlrpc','http://api.flickr.com',80);
 $this->server->setDebug($debug);
 }

 public function call($method,$params) {

 # add the api_key to $params
 $params['api_key'] = $this->api_key;

 # build the struct parameter needed
 foreach ($params as $key=>$val) {
 $xrv_array[$key] = new XML_RPC_Value($val,"string");
 }
 $xmlrpc_val = new XML_RPC_Value ($xrv_array,'struct');

 $msg = new XML_RPC_Message($method, array($xmlrpc_val));
 $resp = $this->server->send($msg);

 return process_xmlrpc_resp($resp);

 } //call

} //class flickr_client

function search_example () {
 GLOBAL $API_KEY;
 $server = new XML_RPC_Client('/services/xmlrpc','http://api.flickr.com',80);
 $server->setDebug(0);

 $myStruct = new XML_RPC_Value(array(
 "api_key" => new XML_RPC_Value($API_KEY, "string"),
 "tags" => new XML_RPC_Value('flower',"string"),
 "per_page" => new XML_RPC_Value('2',"string"),
), "struct");

 $msg = new XML_RPC_Message('flickr.photos.search', array($myStruct));
 $resp = $server->send($msg);

 return process_xmlrpc_resp($resp);
}

function gettime() {

 # http://www.xmlrpc.com/currentTime
 $server = new XML_RPC_Client('/RPC2','http://time.xmlrpc.com',80);
 $server->setDebug(0);

 $msg = new XML_RPC_Message('currentTime.getCurrentTime');
 $resp = $server->send($msg);

 return process_xmlrpc_resp($resp);

}

print "current time: ".gettime();
print "output from search_example \n" . search_example(). "\n";

$flickr = new flickr_client($API_KEY,0);

print "output from generalized Flickr client using XML-RPC\n";
print $flickr-
>call('flickr.photos.search',array('tags'=>'dog','per_page'=>'2'));
?>

What’s Happening on the Wire?
XML-RPC is meant to abstract away how a remote procedure call is translated into an
exchange of XML documents over HTTP so that you as a user of XML-RPC don’t have
to understand the underlying process. That’s the theory with XML-RPC and especially
with SOAP, an expansive elaboration on XML-RPC out of which it originally evolved.
In practice, with the right tools and under certain circumstances, consuming services
with XML-RPC or SOAP is a very simple, trouble-free experience.

At other times, however, you’ll find yourself having to know more about the
underlying protocol than you really need to know. For that reason, in the following
sections I’ll show you techniques for making sense of what XML is actually being
exchanged and how it’s being exchanged over HTTP. This discussion is meant as an
explication of XML-RPC in its own right but also as preparation for studying the yet
more complicated SOAP later in the chapter. But first, let’s look at two tools that I use
to analyze XML-RPC and SOAP: Wireshark and curl.

Using Wireshark and curl to Analyze and Formulate HTTP
Messages
Wireshark (http://www.wireshark.org/) is an open source network protocol analyzer
that runs on Windows, OS X, and Linux. With it, you can analyze network traffic
flowing through your computer, including any HTTP traffic—making it incredibly
useful for seeing what’s happening when you are using web APIs (or, if you are curious,
merely surfing the Web). Refer to the Wireshark site for instructions about how to
install and run Wireshark for your platform.

Tip With Wireshark, I found it helpful to turn off the Capture Packets in Promiscuous Mode option.
Also, for studying web service traffic, I filter for only HTTP traffic—otherwise, there is too much data to
view.

curl (http://curl.haxx.se/) is another highly useful command-line tool for working
with HTTP—among many other things:

curl is a command line tool for transferring files with URL syntax,
supporting FTP, FTPS, HTTP, HTTPS, SCP, SFTP, TFTP, TELNET,
DICT, FILE and LDAP. curl supports SSL certificates, HTTP POST, HTTP
PUT, FTP uploading, HTTP form based upload, proxies, cookies,
user+password authentication (Basic, Digest, NTLM, Negotiate, kerberos .
. .), file transfer resume, proxy tunneling, and a busload of other useful
tricks.

Go to http://curl.haxx.se/download.html to find a package for your platform. Be
sure to look for packages that support SSL—you’ll need it when you come to some
examples later this chapter. Remember in particular the following documentation:

 * http://curl.haxx.se/docs/manpage.html is the man page for curl.

 * http://curl.haxx.se/docs/httpscripting.html is the most helpful page in many
ways because it gives concrete examples.

To learn these tools, I suggest using curl to issue an HTTP request and using
Wireshark to analyze the resulting traffic. For instance, you can start with the following:
curl http://www.yahoo.com

to see how to retrieve the contents of a web page. To see the details about the HTTP
request and response, turn on the verbose option and make explicit what was implicit
(that fetching the content of http://www.yahoo.com uses the HTTP GET method):
curl -v -X GET http://www.yahoo.com

You can get more practice studying Wireshark and the Flickr API by performing
some function in the Flickr UI or in the Flickr API Explorer and seeing what HTTP
traffic is exchanged. Try operations that don’t require any Flickr permissions, and then
try ones that require escalating levels of permissions. You can see certainly see the
Flickr API being invoked and when HTTP GET vs. HTTP POST is used by Flickr—and
specifically what is being sent back and forth.

I’ll teach you more about curl in the context of the following examples.

Parsing XML-RPC Traffic
When you look at the documentation for the XML-RPC request format for Flickr
(http://www.flickr.com/services/api/request.xmlrpc.html) and for the response format
(http://www.flickr.com/services/api/response.xmlrpc.html), you’ll find confirmation
that the transport mechanism is indeed HTTP (just as it for the REST request and
response). However, the request parameters and response are wrapped in many layers of

XML tags. I’ll show you how to use Wireshark and curl to confirm for yourself what’s
happening when you use XML-RPC.

Here I use Wireshark to monitor what happens when I run the Python example that
uses the flickr.photos.search method and then use curl to manually duplicate the same
request to show how you can formulate XML-RPC requests without calling an XML-
RPC library per se. Again, I’m not advocating this as a practical way of using XML-
RPC but as a way of understanding what’s happening when you do use XML-RPC.

When I ran the Python program and monitored the HTTP traffic, I saw the following
request (an HTTP POST to /services/xmlrpc/):
POST /services/xmlrpc/ HTTP/1.0

It had the following HTTP request headers:

Host: api.flickr.com
User-Agent: xmlrpclib.py/1.0.1 (by www.pythonware.com)
Content-Type: text/xml
Content-Length: 415

and the following request body (reformatted here for clarity):

<?xml version='1.0'?>
<methodCall>
 <methodName>flickr.photos.search</methodName>
 <params>
 <param>
 <value><struct>
 <member>
 <name>per_page</name>
 <value><int>3</int></value>
 </member>
 <member>
 <name>api_key</name>
 <value><string>[API-KEY]</string></value>
 </member>
 <member>
 <name>tags</name>
 <value><string>flower</string></value>
 </member>
 </struct></value>
 </param>
 </params>
</methodCall>

The HTTP response (edited here for clarity) was as follows:

HTTP/1.1 200 OK
Date: Sun, 26 Aug 2007 04:33:29 GMT
Server: Apache/2.0.52
[...some cookies....]
Content-Length: 1044
Connection: close
Content-Type: text/xml; charset=utf-8

<?xml version="1.0" encoding="utf-8" ?>

<methodResponse>
 <params>
 <param>
 <value>
 <string>
 <photos page="1" pages="485823"
 perpage="3" total="1457468">
 <photo id="1237314286" owner="41336703@N00"
 secret="372291c5f7" server="1088"
farm="2"
 title="250807 047" ispublic="1"
isfriend="0"
 isfamily="0" />
 <photo id="1236382563" owner="70983346@N00"
 secret="459e79fde3" server="1376"
farm="2"
 title="Darling daisy necklace" ispublic="1"
 isfriend="0" isfamily="0" />
 <photo id="1237257850" owner="39312862@N00"
 secret="fa9d15f9c3" server="1272"
farm="2"
 title="Peperomia species" ispublic="1"
 isfriend="0" isfamily="0" />
 </photos>
 </string>
 </value>
 </param>
 </params>
</methodResponse>

To make sense of the interchange, it’s useful to study the XML-RPC specification
(http://www.xmlrpc.com/spec) to learn that the Flickr XML-RPC request is passing in
one struct that holds all the parameters. The request uses HTTP POST. What comes back
in the response is an entity-encoded XML <photos> element (the results that we wanted
from the API), wrapped in a series of XML elements used in the XML-RPC protocol to
encapsulate the response. This process of serializing the request and deserializing the
response is what an XML-RPC library does for you.

We can take this study of XML-RPC one more step. You can use curl (or another
HTTP client) to confirm that you can synthesize an XML-RPC request independently of
any XML-RPC library to handle the work for you. This is not a convenient way to do
things, and it defeats the purpose of using a protocol such as XML-RPC—but this
technique is helpful for proving to yourself that you really understand what is really
happening with a protocol.

To wit, to call flickr.photos.search using XML-RPC, you need to send an HTTP
POST request to http://api.flickr.com/services/xmlrpc/ whose body is the same as
what I pulled out using Wireshark. The call, formulated as an invocation of curl, is as
follows:

curl -v -X POST --data-binary "<?xml version='1.0' encoding='UTF-8'?> ~CCC

<methodCall><methodName>flickr.photos.search</methodName><params><param><value>
~CCC

<struct><member><name>per_page</name><value><int>3</int></value></member><member
> ~CCC
 <name>api_key</name><value><string>[API-KEY]</string></value></member><member>
~CCC

<name>tags</name><value><string>flower</string></value></member></struct></value
> ~CCC
 </param></params></methodCall>" http://api.flickr.com/services/xmlrpc/

Note To write curl invocations that work from the command line of Windows, OS X, and Linux, I
rewrote the XML to use single quotes to allow me to use double quotes to wrap the XML.

You can issue this request through curl to convince yourself that you are now
speaking and understanding XML-RPC responses!

An XML-RPC library is supposed to hide the details you just looked at from you.
One of the major practical problems that I have run into when using XML-RPC (and
SOAP) is understanding for a given language and library how exactly to formulate a
request. Notice some important lines from the examples. An essentialist rendition of the
Python example is as follows:

server = ServerProxy("http://api.flickr.com/services/xmlrpc/")
args = {'api_key': API_KEY, 'tags':'flower', 'per_page':3}
rsp = server.flickr.photos.search(args)
rsp = rsp.encode('utf-8')
tree = et.XML(rsp)
print "total number of photos: %s" %(tree.get('total'))

Besides the mechanics of calling the right libraries, you had to know how to pass in
the URL endpoint of the XML-RPC server—which is usually not too hard—but also
how to package up the parameters. Here, I had to use a Python dictionary, whose keys
are the names of the Flickr parameters. I then call flickr.photos.search as a method of
server and get back XML.

The PHP example can be boiled down to this:

 $server = new XML_RPC_Client('/services/xmlrpc','http://api.flickr.com',80);
 $myStruct = new XML_RPC_Value(array(
 "api_key" => new XML_RPC_Value($API_KEY, "string"),
 "tags" => new XML_RPC_Value('flower',"string"),
 "per_page" => new XML_RPC_Value('2',"string"),
), "struct");
 $msg = new XML_RPC_Message('flickr.photos.search', array($myStruct));
 $resp = $server->send($msg);
 $val = $resp->value()->scalarval();

Again, I knew what I had to tell PHP and the PEAR::XML_RPC library, and once
someone provides you with skeletal code like I did here, it’s not hard to use. However, it
has been my experience with XML-RPC and especially SOAP that it takes a lot of work
to come up with the incantation that works. Complexity is moved from having to
process HTTP and XML directly (as you would have using the Flickr REST interface)

to understanding how to express methods and their parameters in the way a given
higher-level toolkit wants from you.

SOAP
SOAP is a complicated topic of which I readily admit to having only a limited
understanding. SOAP and the layers of technologies built on top of SOAP—WSDL,
UDDI, and the various WS-* specifications (http://en.wikipedia.org/wiki/WS-%2A)—
are clearly getting lots of attention, especially in enterprise computing, which deals with
needs addressed by this technology stack. I cover SOAP and WSDL (and leave out the
other specifications) in this book because some of the APIs you may want to use in
creating mashups are expressed in terms of SOAP and WSDL. My goal is to provide
practical guidance as to how to consume such services, primarily from the perspective
of a PHP and Python programmer.

As with XML-RPC, SOAP and WSDL are supposed to make your life as a
programmer easier by abstracting away the underlying HTTP and XML exchanges so
that web services look a lot like making a local procedure call. I’ll start with simple
examples, using tools that make using SOAP and WSDL pretty easy to use, in order to
highlight the benefits of SOAP and WSDL, and then I’ll move to more complicated
examples that show some of the challenges. Specifically, I’ll show you first how to use
a relatively straightforward SOAP service (geocoder.us), proceeding to a more
complicated service (Amazon.com’s ECS AWS), and then discussing what turns out to
be unexpectedly complicated (the Flickr SOAP interface).

The Dream: Plug-and-Go Functionality Through WSDL and
SOAP
As you learned in Chapter 6, the process of using the Flickr REST interface generally
involves the following steps:

 1. Finding the right Flickr method to use

 2. Figuring out what parameters to pass in and how to package up the values

 3. Parsing the XML payload

Although these steps are not conceptually difficult, they do tend to require a fair
amount of manual inspection of the Flickr documentation by any developer working
directly with the Flickr API. A Flickr API kit in the language of your choice might make
it easier because it makes Flickr look like an object in that language. Accordingly, you
might then be able to use the facilities of the language itself to tell you what Flickr
methods are available and what parameters they take and be able to get access to the
results without having to directly parse XML yourself.

You might be happy as a user of the third-party kit, but the author of any third-party
kit for Flickr must still deal with the original problem of manually translating the logic
and semantics of the Flickr documentation and API into code to abstract it away for the
user of the API kit. It’s a potentially tedious and error-prone process. In Chapter 6, I
showed you how you could use the flickr.reflection methods to automatically list the
available API methods and their parameters. Assuming that Flickr keeps the information

coming out of those methods up-to-date, there is plenty of potential to exploit with the
reflection methods.

However, flickr.reflection.getMethodInfo does not currently give us information
about the formal data typing of the parameters or the XML payload. For instance,
http://www.flickr.com/services/api/flickr.photos.search.html tells us the following
about the per_page argument: “Number of photos to return per page. If this argument is
omitted, it defaults to 100. The maximum allowed value is 500.” Although this
information enables a human interpreter to properly formulate the per_page argument, it
would be difficult to write a program that takes advantage of this fact about per_page. In
fact, it would be useful even if flickr.reflections.getMethodInfo could tell us that the
argument is an integer without letting us know about its range.

That’s where Web Services Definition Language (WSDL) comes in as a potential
solution, along with its typical companion, SOAP. There are currently two noteworthy
versions of WSDL. Although WSDL 2.0 (documented at
http://www.w3.org/TR/2007/REC-wsdl20-20070626/) is a W3C recommendation, it seems
to me that WSDL 1.1, which never became a de jure standard, will remain the dominant
version of WSDL for some time (both in WSDL documents you come across and the
tools with which you will have easy access). WSDL 1.1 is documented at
http://www.w3.org/TR/wsdl.

A WSDL document specifies the methods (or in WSDL-speak operations) that are
available to you, their associated messages, and how they turned in concrete calls you
can make, typically through SOAP. (There is support in WSDL 2.0 for invoking calls
using HTTP without using SOAP.) Let me first show you concretely how to use WSDL,
and I’ll then discuss some details of its structure that you might want to know even if
you choose never to look in depth at how it works.

geocoder.us
Consider the geocoder.us service (http://geocoder.us/) that offers both free
noncommercial and for-pay commercial geocoding for U.S. addresses. You can turn to
the API documentation (http://geocoder.us/help/) to learn how to use its free REST-
RDF, XML-RPC, and SOAP interface. There are three methods supported by
geocoder.us:

geocode: Takes a U.S. address or intersection and returns a list of results

geocode_address: Works just like geocode except that it accepts only an address

geocode_intersection: Works just like geocode except that it accepts only an
intersection

Let’s first use the interface that is most familiar to you, which is its REST-RDF
interface, and consider the geocode method specifically. To find the latitude and
longitude of an address, you make an HTTP GET request of the following form:
http://geocoder.us/service/rest/geocode?address={address}

For example, applying the method to the address of Apress:
http://geocoder.us/service/rest/geocode?address=2855+Telegraph+Ave%2C+Berkeley%2
C+CA

gets you this:

<?xml version="1.0"?>
<rdf:RDF
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
>
<geo:Point rdf:nodeID="aid78384162">
 <dc:description>2855 Telegraph Ave, Berkeley CA 94705</dc:description>
 <geo:long>-122.260070</geo:long>
 <geo:lat>37.858276</geo:lat>
</geo:Point>
</rdf:RDF>

Now let’s make the same call using the SOAP interface. Instead of making the
SOAP call directly to the geocode method, let’s use the WSDL document for the service:
http://geocoder.us/dist/eg/clients/GeoCoderPHP.wsdl

Note Because the first WSDL document
(http://geocoder.us/dist/eg/clients/GeoCoder.wsdl) referenced by geocoder.us apparently
gives PHP 5 heartburn, I instead use the second WSDL document (GeoCoderPHP.wsdl) in this chapter.

I will use the WSDL document in a variety of ways to teach you the ideal usage
pattern for WSDL, which involves the following steps:

 * A SOAP/WSDL tool/library takes a given WSDL document and makes
transparent the operations that are available to you.

 * For a given operation, the SOAP/WSDL tool makes it easy for you to understand
the possible input parameters and formulate the appropriate request message.

 * The SOAP/WSDL tool then returns the response to you in some easy-to-parse
format and handles any faults that come up in the course of the operation.

Using the oXygen XML Editor
My favorite way of testing a WSDL file and issuing SOAP calls is to use a visual IDE
such as oXygen (http://www.oxygenxml.com/). Among the plethora of XML-related
technologies supported by oXygen is the WSDL SOAP Analyser. I describe how you
can use it to invoke the geocoder.us geocode operation to illustrate a core workflow.

Note oXygen is a commercial product. You can evaluate it for 30 days free of charge. XML Spy
(http://www.altova.com/), another commercial product, provides a similar WSDL tool. I know of one
open source project that lets you visually explore a WSDL document and invoke operations: the Web
Services Explorer for the Eclipse project that is part of the Web Tools project
(http://www.eclipse.org/webtools/).

When you start the WSDL SOAP Analyser, you are prompted for the URL of a
WSDL file. You enter the URL for the geocoder.us WSDL (listed earlier), and oXygen
reads the WSDL file and displays a panel with four subpanels. (Figure 7-1 shows the
setup of this panel.) The first subpanel contains three drop-down menus for three types
of entities defined in the WSDL file:

 * Services

 * Ports

 * Operations

The geocoder.us WSDL file follows a pattern typical for many WSDL files: it has
one service (GeoCode_Service) tied to one port (GeoCode_Port), which is tied, through a
specific binding, to one or more operations. It’s this list of operations that is the heart of
the matter if you want to use any of the SOAP services. The panel shows three
operations (geocode, geocode_address, and geocode_intersection) corresponding to the
three methods available from geocoder.us.

Insert 858Xf0701.tif

Figure 7-1. The WSDL SOAP Analyser panel loaded with the geocoder.us WSDL

The values shown in the three other subpanels depend on the operation you select.
The four subpanels list the parameters described in Table 7-1.

Table 7-1. Panels and Parameters from the WSDL Soap Analyser in oXygen

Panel Parameter Explanation
WSDL Services Drop-down menu of services (for example, GeoCode_Service)

 Ports Drop-down menu of ports (for example, GeoCode_Port)

 Operations Drop-down menu of operations (for example, geocode)

Actions URL For example, http://rpc.geocoder.us/service/soap/

 SOAP action For example, http://rpc.geocoder.us/Geo/Coder/US#geocode

Request The body of the request (you fill in the parameters)

Response The body of the response (this is the result of the operation)

As someone interested in just using the geocode operation (rather understanding the
underlying mechanics), you would jump immediately to the sample request that oXygen
generates:

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Header/>
 <SOAP-ENV:Body>
 <oxy:geocode xmlns:oxy="http://rpc.geocoder.us/Geo/Coder/US/"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <location>STRING</location>
 </oxy:geocode>
 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

To look up the address of Apress, you would replace this:
<location>STRING</location>

with the following:
<location>2855 Telegraph Ave, Berkeley CA 94705</location>

and hit the Send button on the Request subpanel to get the following to show up in the
Response subpanel:

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <SOAP-ENV:Body>
 <namesp6:geocodeResponse
xmlns:namesp6="http://rpc.geocoder.us/Geo/Coder/US/">
 <geo:s-gensym23 xsi:type="SOAP-ENC:Array"
 xmlns:geo="http://rpc.geocoder.us/Geo/Coder/US/"
 SOAP-ENC:arrayType="geo:GeocoderAddressResult[1]">
 <item xsi:type="geo:GeocoderAddressResult">
 <number xsi:type="xsd:int">2855</number>
 <lat xsi:type="xsd:float">37.858276</lat>
 <street xsi:type="xsd:string">Telegraph</street>
 <state xsi:type="xsd:string">CA</state>
 <zip xsi:type="xsd:int">94705</zip>
 <city xsi:type="xsd:string">Berkeley</city>
 <suffix xsi:type="xsd:string"/>
 <long xsi:type="xsd:float">-122.260070</long>
 <type xsi:type="xsd:string">Ave</type>
 <prefix xsi:type="xsd:string"/>
 </item>
 </geo:s-gensym23>
 </namesp6:geocodeResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

There you have it. Let’s review what oXygen and a WSDL document could
accomplish for you:

 * You can get a list of operations available for the services and ports defined in the
WSDL (not atypically one service and port combination).

 * You are given a template for the body of the request with an indication of the data
type of what you need to fill in.

 * oXygen packages up the request, issues the HTTP request, handles the response,
and presents you with the results.

To confirm that you understand the nuances of the geocode SOAP call, you can
rewrite the SOAP request as a curl invocation—once you notice the role played by the
two parameters that oXygen does pick up from the WSDL document:

 * The SOAP action of http://rpc.geocoder.us/Geo/Coder/US#geocode. In SOAP 1.1,
the version of SOAP used for geocoder.us, the SOAP action is transmitted as a
SOAPAction HTTP request header.

 * The URL (or location) to target the SOAP call:
http://rpc.geocoder.us/service/soap/.

SOAP 1.1 AND SOAP 1.2

Ideally, one wouldn’t need to dive too much into the SOAP protocol—after all, the whole point of SOAP
is to make access to web services look like programming objects on your own desktop or server. But
libraries and services do seem to have crucial dependences on the actual version of SOAP being used
(for example).

SOAP has become a W3C Recommendation. The latest version of SOAP is 1.2:

http://www.w3.org/TR/soap12-part1/

Earlier versions of SOAP are still very much in use—maybe even more so than version 1.2.
Version 1.1 is specified here:

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

Here are a few salient differences between the two specifications (the differences are described
in detail at http://www.w3.org/TR/2007/REC-soap12-part0-20070427/#L4697):

 * Different namespaces for the SOAP envelope (http://www.w3.org/2003/05/soap-envelope
for version 1.2 and http://schemas.xmlsoap.org/soap/envelope/ for version 1.1)—a
practical heuristic to help spot which version of SOAP you are dealing with.

 * Different use of the SOAPAction parameter for the SOAP HTTP binding. In SOAP 1.2, a
SOAPAction HTTP request header is no longer used.

 * The use of an HTTP response header of Content-Type “application/soap+xml” to identify SOAP
1.2.

I point out these differences because libraries and toolsets support different versions of SOAP.

You can now replicate this call with curl:

curl -v -X POST -H "SOAPAction: http://rpc.geocoder.us/Geo/Coder/US#geocode"
~CCC
--data-binary "<SOAP-ENV:Envelope xmlns:SOAP-
ENV='http://schemas.xmlsoap.org/soap/ ~CCC
envelope/'><SOAP-ENV:Header/><SOAP-ENV:Body><oxy:geocode xmlns:oxy= ~CCC
'http://rpc.geocoder.us/Geo/Coder/US/' SOAP-ENV:encodingStyle='http://schemas.
~CCC
xmlsoap.org/soap/encoding/'><location>2855 Telegraph Ave, Berkeley,
CA</location> ~CCC
</oxy:geocode></SOAP-ENV:Body></SOAP-ENV:Envelope>" ~CCC
http://rpc.geocoder.us/service/soap/

Note that you need to know the SOAPaction header and URL of the SOAP call only if
you are trying to understand all the details of the HTTP request and response. oXygen
was just being helpful in pointing out those parameters. They, however, were not
needed to fill out an address or interpret the latitude or longitude contained in the
response.

Note If you’re wondering why I’m not using Flickr for my concrete example, Flickr does not offer a
WSDL document even though it does present a SOAP interface. I’ll return to discussing Flickr in the later
section called “The Flickr API via SOAP.”

Even without access to oXygen or the Eclipse Web Services Explorer, you can use
Tomi Vanek’s WSDL XSLT-based viewer
(http://tomi.vanek.sk/index.php?page=wsdl-viewer) to make sense of a WSDL
document. For example, take a look at the results for the geocoder.us WSDL document:

http://www.w3.org/2000/06/webdata/xslt?xslfile=http://tomi.vanek.sk/xml/ ~CCC
wsdl-
viewer.xsl&xmlfile=http://geocoder.us/dist/eg/clients/GeoCoderPHP.wsdl&
~CCC
transform=Submit

Using Python’s SOAPpy
Let’s take a look how to use the geocoder.us WSDL using the SOAPpy library in Python.

Note You can download SOAPpy from http://pywebsvcs.sourceforge.net/. Mark Pilgrim’s Dive
Into Python provides a tutorial for SOAPpy at
http://www.diveintopython.org/soap_web_services/index.html.

The following piece of Python code shows the process of creating a WSDL proxy,
asking for the methods (or operations) that are defined in the WSDL document, and then
calling the geocode method and parsing the results:

from SOAPpy import WSDL

wsdl_url = r'http://geocoder.us/dist/eg/clients/GeoCoderPHP.wsdl'
server = WSDL.Proxy(wsdl_url)

let's see what operations are supported
server.show_methods()

geocode the Apress address
address = "2855 Telegraph Ave, Berkeley, CA"
result = server.geocode(location=address)
print "latitude and longitude: %s, %s" % (result[0]['lat'], result[0]['long'])

This produces the following output (edited for clarity):

Method Name: geocode_intersection
 In #0: intersection ((u'http://www.w3.org/2001/XMLSchema', u'string'))
 Out #0: results ((u'http://rpc.geocoder.us/Geo/Coder/US/',
u'ArrayOfGeocoderIntersectionResult'))

Method Name: geocode_address
 In #0: address ((u'http://www.w3.org/2001/XMLSchema', u'string'))
 Out #0: results ((u'http://rpc.geocoder.us/Geo/Coder/US/',
u'ArrayOfGeocoderAddressResult'))

Method Name: geocode
 In #0: location ((u'http://www.w3.org/2001/XMLSchema', u'string'))
 Out #0: results ((u'http://rpc.geocoder.us/Geo/Coder/US/',
u'ArrayOfGeocoderResult'))

latitude and longitude: 37.858276, -122.26007

Notice the reference to XML schema types in describing the location parameter for
geocode. The type definitions come, as one expects, from the WSDL document.

The concision of this code shows WSDL and SOAP in good light.

USING SOAP FROM PHP

There are several choices of libraries for consuming SOAP in PHP:

 * NuSOAP (http://sourceforge.net/projects/nusoap/)

 * PEAR::SOAP package (http://pear.php.net/package/SOAP)

 * The built-in SOAP library in PHP 5 (http://us2.php.net/soap), which is available if PHP is
installed with the enable-soap flag

In this book, I use the PEAR::SOAP library.

Using PHP PEAR::SOAP
Let’s do the straight-ahead PHP PEAR::SOAP invocation of geocode.us. You’ll the same
pattern of loading the WSDL document using a SOAP/WSDL library, packaging up a
named parameter (location) in the request, and then parsing the results.

<?php
example using PEAR::SOAP + Geocoder SOAP search
require 'SOAP/Client.php';

let's look up Apress
$address = '2855 Telegraph Avenue, Berkeley, CA 94705'; // your Google search
terms

$wsdl_url = "http://geocoder.us/dist/eg/clients/GeoCoderPHP.wsdl";

true to indicate that it is a WSDL url.
$soap = new SOAP_Client($wsdl_url,true);

$params = array(
 'location'=>$address
);

$results = $soap->call('geocode', $params);

include some fault handling code
if(PEAR::isError($results)) {
 $fault = $results->getFault();
 print "Error number " . $fault->faultcode . " occurred\n";
 print " " . $fault->faultstring . "\n";
} else {
 print "The latitude and longitude for address is: {$results[0]->lat},
{$results[0]->long}";
}
?>

Note I have not been able to figure out how to use PEAR::SOAP to tell me the operations that are
available for a given WSDL file.

Amazon ECS
Now that you have studied the geocoder.us service, which has three SOAP methods,
each with a single input parameter, let’s turn to a more complicated example, the
Amazon E-Commerce Service (ECS):
http://www.amazon.com/E-Commerce-Service-AWS-home-page/b?ie=UTF8&node=12738641

See the “Setting Up an Amazon ECS Account” sidebar to learn about how to set up
an Amazon ECS account.

SETTING UP AN AMAZON ECS ACCOUNT

To use the service, you need to obtain keys by registering an account (like with Flickr):

http://www.amazon.com/gp/aws/registration/registration-form.html

If you already have an account, you can find your keys again:

http://aws-portal.amazon.com/gp/aws/developer/account/index.html/?ie=UTF8&
action=access-key

You get an access key ID and a secret access key to identify yourself and your agents to AWS.
You can also use an X.509 certificate, which the Amazon interface can generate for you.

Although I focus here on the SOAP interface, ECS also has a REST interface. The
WSDL for AWS-ECS is found at
http://webservices.amazon.com/AWSECommerceService/AWSECommerceService.wsdl?

Using one of the SOAP/WSDL toolkits I presented in the previous section (for
example, oXygen, the Eclipse Web Services Explorer, or Vanek’s WSDL viewer), you

can easily determine the 20 operations that are currently defined by the WSDL
document. Here I show you how to use the ItemSearch operation.

If you use oXygen to formulate a template for a SOAP request, you’ll get the
following:

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Header/>
 <SOAP-ENV:Body>
 <ItemSearch
 xmlns="http://webservices.amazon.com/AWSECommerceService/2007-07-16">
 <AWSAccessKeyId>STRING</AWSAccessKeyId>
 [5 tags]
 <Shared>
 [40 tags]
 </Shared>
 <Request>
 [40 tags]
 </Request>
 </ItemSearch>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Let’s say you wanted to look for books with the keyword flower. To create the
proper request, you’ll need to figure out which of the many tags you must keep and how
to fill out the values that you need to fill out. Through reading the documentation for
ItemSearch (http://docs.amazonwebservices.com/AWSECommerceService/2007-07-
16/DG/ItemSearch.html) and trial and error, you can boil down the request template to
the following:

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Header/>
 <SOAP-ENV:Body>
 <ItemSearch
 xmlns="http://webservices.amazon.com/AWSECommerceService/2007-07-16">
 <AWSAccessKeyId>STRING</AWSAccessKeyId>
 <Request>
 <Keywords>STRING</Keywords>
 <SearchIndex>STRING</SearchIndex>
 </Request>
 </ItemSearch>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

You can pull together a full request by filling out your Amazon key and entering
flower and Books for the <Keywords> and <SearchIndex> into a curl invocation:

curl -H "SOAPAction: http://soap.amazon.com" -d "<?xml version='1.0' ~CCC
encoding='UTF-8'?><SOAP-ENV:Envelope xmlns:SOAP-ENV='http://schemas.xmlsoap.org/
~CCC
soap/envelope/'><SOAP-ENV:Header/><SOAP-ENV:Body><ItemSearch ~CCC
xmlns='http://webservices.amazon.com/AWSECommerceService/2007-07-16'> ~CCC
<AWSAccessKeyId>[AMAZON-
KEY]</AWSAccessKeyId><Request><Keywords>flower</Keywords> ~CCC

<SearchIndex>Books</SearchIndex></Request></ItemSearch></SOAP-ENV:Body> ~CCC
</SOAP-ENV:Envelope>"
http://soap.amazon.com/onca/soap?Service=AWSECommerceService

to which you get something like this:

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <SOAP-ENV:Body>
 <ItemSearchResponse
 xmlns="http://webservices.amazon.com/AWSECommerceService/2007-07-16">
 <OperationRequest>
[....]
 </OperationRequest>
 <Items>
 <Request>
 <IsValid>True</IsValid>
 <ItemSearchRequest>
 <Keywords>flower</Keywords>
 <SearchIndex>Books</SearchIndex>
 </ItemSearchRequest>
 </Request>
 <TotalResults>34489</TotalResults>
 <TotalPages>3449</TotalPages>
 <Item>
 <ASIN>0812968069</ASIN>
 <DetailPageURL>
 http://www.amazon.com/gp/redirect.html%3FASIN=0812968069%26 ~CCC
tag=ws%26lcode=sp1%26cID=2025%26ccmID=165953%26location=/o/ASIN/0812968069%253F
~CCC
SubscriptionId=0Z8Z8FYGP01Q00KF5802</DetailPageURL>
 <ItemAttributes>
 <Author>Lisa See</Author>
 <Manufacturer>Random House Trade Paperbacks</Manufacturer>
 <ProductGroup>Book</ProductGroup>
 <Title>Snow Flower and the Secret Fan: A Novel</Title>
 </ItemAttributes>
 </Item>
[...]
 </Items>
 </ItemSearchResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Notice what makes this example more complicated than geocoder.us:

 * There are many more operations.

 * There are many more parameters, and it’s not obvious what is mandatory without
reading the documentation and experimenting.

 * The XML in the request and response involve complex types. Notice that
<Keywords> and <SearchIndex> are wrapped within <Request>. This representation
means you have to understand how to get your favorite SOAP library to package
up the request and handle the response.

Using the Python SOAPpy library, you perform the same SOAP call with the
following:

amazon search using WSDL
KEY = "[AMAZON-KEY]"

from SOAPpy import WSDL

class amazon_ecs(object):
 def __init__(self, key):
 AMAZON_WSDL =
"http://webservices.amazon.com/AWSECommerceService/AWSECommerceService.wsdl?"
 self.key = key
 self.server = WSDL.Proxy(AMAZON_WSDL)
 def ItemSearch(self,Keywords,SearchIndex):
 return self.server.ItemSearch(AWSAccessKeyId=self.key,Request= ~CCC
{'Keywords':Keywords,'SearchIndex':SearchIndex})

if __name__ == "__main__":
 aws = amazon_ecs(KEY)
 results= aws.ItemSearch('flower','Books')
 print results.Items.TotalPages, results.Items.TotalResults
 for item in results.Items.Item:
 print item.ASIN, item.DetailPageURL, item.ItemAttributes.Author

Notice in particular how to represent the nested parameters in this:

self.server.ItemSearch(AWSAccessKeyId=self.key,Request= ~CCC
{'Keywords':Keywords,'SearchIndex':SearchIndex})

Also notice how to read off the nested elements in the XML response:

print results.Items.TotalPages, results.Items.TotalResults
for item in results.Items.Item:
 print item.ASIN, item.DetailPageURL, item.ItemAttributes.Author

When you look at this Python code and my description of how to use oXygen to
interface with Amazon ECS via WSDL and SOAP, you might think to yourself that
doing so doesn’t look that hard. The combination of WSDL and SOAP does indeed
bring some undeniable conveniences such as the automated discovery of what methods
are available to you as a programmer. However, my experience of SOAP and WSDL is
that they are still a long way from plug-and-go technology—at least in the world of
scripting languages such as PHP and Python. It took me a great amount of trial and
error, reverse engineering, reading source code, and hunting around to even get to the
point of distilling for you the various examples of how to use SOAP and WSDL you see
here. I would have wanted to reduce using SOAP and WSDL to full-proof recipes that
hid from you what was happening underneath.

For instance—returning to the example—I was not able to able to craft a satisfactory
working example of using PEAR::SOAP to call ItemSearch. Some of the issues I struggled

with included how to pass in parameters with complex types to a SOAP call, how to
parse the results, and how to debug the entire process. I’d be willing to bet that there is
in fact a way to make this call work with PEAR::SOAP or in some other PHP toolkit.
However, if I had wanted to call this SOAP service only for a mashup, I would likely
have given up even earlier on figuring out how to make it work.

Note It might be true that if you use Java or .NET, programming environments for which there is deep
support for SOAP and WSDL, you might have an easier time using this technology. Don’t let me
discourage you from trying those tools. I hope to find out for myself whether libraries such as Axis from the
Apache Project (http://ws.apache.org/axis/java/index.html) or the WSDL functionality in .NET
do indeed make my life as a SOAP developer easier.

The Flickr API via SOAP
The Flickr SOAP request and response formats are documented here:

http://www.flickr.com/services/api/request.soap.html
http://www.flickr.com/services/api/response.soap.html

The first thing to notice about the Flickr SOAP interface is that Flickr provides no
WSDL document to tell us how to use it. Hence, if you want to use Flickr SOAP, you
need to figure out how call it directly yourself. But why bother? Flickr has a
wonderfully supported REST interface that you already know how to use. If you go
down the road of using the SOAP interface, you’ll have to deal with many challenges,
some of which I have already discussed.

Learning About Specific Web APIs
In the previous section, I showed you how to call web APIs that use XML-RPC and
SOAP. That still leaves many APIs that fall under the name of REST—ones that look a
lot like the Flickr REST interface. These APIs take some things we are familiar with
from web browsers, such as going to a specific URL to get back some results and
submitting HTML forms to make a query, but they have one important difference:
instead of sending mostly HTML (which is directed at human consumption), you send
primarily XML, a lingua franca of computer data exchange. For that reason, you should
remind yourself of what you’ve learned from the previous chapters as you embark on a
study of other REST APIs.

In the following sections, I’ll make sense of the world of web APIs, covering how to
find out what APIs are available and then how to use a particular API. I’ll start my
discussion by introducing perhaps the single most useful website about web APIs:
Programmableweb.com. There’s a lot of information that is both readily apparent and
waiting to be discovered in this treasure trove of data.

Note Other directories of web services that are worth exploring are http://www.xmethods.net/,
which lists publicly available SOAP services, and http://strikeiron.com/, a provider of commercial

web services that you can try for free.

Programmableweb.com
Programmableweb.com, started and maintained by Jon Musser, is an excellent resource
for learning about what APIs are available, the basic parameters for the APIs, and the
mashups that use any given API. Some noteworthy sections are as follows:

 * http://www.programmableweb.com/apis is the “API dashboard” that lists the latest
APIs to be registered and the most popular APIs being used in mashups.

 * http://www.programmableweb.com/apilist/bycat lists APIs by categories.
Understanding the various categories that have emerged is helpful for
understanding for which fields of endeavor people are making APIs.

 * http://www.programmableweb.com/apilist/bymashups lists APIs by how many
times they are used in the mashups registered at Programmableweb.com.

I highly recommend a close and periodic study of Programmableweb.com for
anybody wanting to learn about web APIs and mashups. Let me show some of the
things you can learn from the website, based both on what is directly presented on the
site and on data that John Musser has sent me. Although web APIs and corresponding
mashups are rapidly changing, the data (and derived results), accurate for August 11,
2007, demonstrates some trends that I think will hold for a while yet.

The first thing to know is that of the 494 web APIs in the database, we get the
distribution of number of APIs by protocol supported shown in Table 7-2. Note that
some APIs are multiply represented.

Table 7-2. Number of APIs vs. Protocol in Programmableweb.com

Protocol Number of APIs with Support
REST 255

SOAP 131

XML-RPC 19

JavaScript 30

Other 16

Some other observations drawn from the database are as follows:

 * Ninety-three APIs have WSDL files associated with them.

 * Of the 131 APIs that support SOAP, 42 also support REST—leaving 89 that
support SOAP but not REST. Eighty-eight APIs support only SOAP.

 * XML-RPC is the only choice for nine APIs.

 * JavaScript is listed as the exclusive protocol for 25 APIs.

The following are my conclusions based on this data:

 * REST is the dominant mode of presenting web APIs, but a significant number of
APIs exist where your only choice is SOAP.

 * There are a relatively small number of APIs listing XML-RPC as the only choice
of protocol.

It’s therefore useful to know how to use SOAP and XML-RPC, even if they are not
your first choice.

Note A large number of APIs list JavaScript as a protocol. I’ll cover such APIs in the next chapter.

Table 7-3 lists the top 20 APIs on Programmableweb.com by mashup count and also
lists the type of protocols supported by the API.

Table 7-3. Top 21 APIs by Mashup Count

API Name Number of Mashups Protocols Support
Google Maps 1110 JavaScript

Flickr 243 REST, SOAP, XML-RPC

Amazon E-Commerce Service 174 REST, SOAP

YouTube 149 REST, XML-RPC

Microsoft Virtual Earth 97 JavaScript

Yahoo! Maps 95 REST, JavaScript, Flash

411Sync 89 RSS input over HTTP, SOAP

eBay 89 SOAP, REST

del.icio.us 83 REST

Google Search 79 SOAP

Yahoo! Search 78 REST

Yahoo! Geocoding 66 REST

Technorati 40 REST

Yahoo! Image Search 31 REST

Yahoo! Local Search 30 REST

Last.fm 28 REST

Google home page 27 JavaScript

Google Ajax Search 24 JavaScript

Upcoming.org 21 REST

Windows Live Search 21 SOAP

Feedburner 21 REST

What can you do with this information? To learn about popular APIs, one approach
would be to go down the list systematically to figure out how each works. Indeed,
through the rest of the book, I’ll cover many of the APIs in the table. The Flickr API is
the second most used API in mashups and is a main subject throughout this book. I’ll
cover the JavaScript-based maps (first and foremost Google Maps but also Yahoo!
Maps and Virtual Earth) first in Chapter 8 and then in depth in Chapter 13. I’ll cover the
Yahoo! Geocoding API extensively also in Chapter 13. I’ll cover various search APIs
(Google Search, Yahoo! Search, Yahoo! Image Search, and Windows Live Search) in
Chapter 19. Finally, I’ll cover the del.icio.us API in Chapter 14 on social bookmarking.
Indeed, the fact that I cover many APIs clustered by subject matter indicates that it is a
natural way to think about APIs.

YouTube
YouTube is probably the most famous video-sharing site on the Web—and it also uses
tagging as one way of organizing content. The YouTube API is documented at
http://www.youtube.com/dev.

The YouTube API supports both a REST interface and an XML-RPC interface. The
examples I give in this section use the REST interface. You can find a list of methods at
http://www.youtube.com/dev_docs.

To use the API, you need to set up your own development profile; see
http://www.youtube.com/my_profile_dev.

An interesting feature of the registration process is that you enter your own secret
(instead of having one set by YouTube). When you submit your profile information, you
then get a “developer ID.” The following are some sample calls. To get the user profile
for a user (for example, rdhyee), you do an HTTP GET on the following:

http://www.youtube.com/api2_rest?method=youtube.users.get_profile& ~CCC
dev_id={youtube-key}&user=rdhyee

YouTube will send you a response something like this:

<?xml version="1.0" encoding="utf-8"?>
<ut_response status="ok">
 <user_profile>
 <first_name>Raymond</first_name>
 <last_name/>
 <about_me/>
 <age>40</age>
 <video_upload_count>2</video_upload_count>
 <video_watch_count>102</video_watch_count>
 [....]
 </user_profile>
</ut_response>

To get the list of rdhyee’s favorite videos, use this:

http://www.youtube.com/api2_rest?method=youtube.users.list_favorite_videos& ~CCC
dev_id={youtube-key}&user=rdhyee

To get details of a video with an ID of XHnE4umovw4, use this:

http://www.youtube.com/api2_rest?method=youtube.videos.get_details& ~CCC

dev_id={youtube-key} &video_id=XHnE4umovw4

To get videos for the tag HolidayWeekend, use this:

http://www.youtube.com/api2_rest?method=youtube.videos.list_by_tag& ~CCC
dev_id={youtube-key}&tag=HolidayWeekend&page=1&per_page=100

There’s more to the API, but you can get a feel for how it works through these
examples.

Caution Expect the YouTube API to evolve into something more like the rest of Google’s APIs:
http://code.google.com/apis/youtube/overview.html.

GData and the Blogger API
The Atom Publishing Protocol (APP), a companion to the Atom Syndication Format
(Atom 1.0) described in Chapter 2, represents the next generation of the blogging APIs.
APP is currently a draft IETF proposal:
http://tools.ietf.org/wg/atompub/draft-ietf-atompub-protocol/

which is linked from here:
http://tools.ietf.org/wg/atompub/

One of APP’s biggest supporters thus far has been Google, which has implemented
GData, which is based on Atom 1.0 and RSS 2.0 feeds, combined with APP. GData,
which incorporates Google-specific extensions, is the foundation of the APIs for many
of its services, including Google Base, Blogger, Google Calendar, Google Code Search,
and Google Notebook:
http://code.google.com/apis/gdata/index.html

The API for Blogger is documented here:
http://code.google.com/apis/blogger/developers_guide_protocol.html

In the following sections, you’ll learn the basics of the API for Blogger as a way of
understanding GData and APP in general.

Obtaining an Authorization Token
The first thing you need to have is a Google account to use Blogger. If you don’t have
one, go to the following location to create one:
https://www.google.com/accounts/NewAccount

Next, with a Google account, you obtain an authorization token. One way to do so is
to follow the procedure for ClientLogin (one of two Google authorization mechanisms)
detailed here:
http://code.google.com/apis/blogger/developers_guide_protocol.html#client_login

Specifically, you make an HTTP POST request to the following location:
https://www.google.com/accounts/ClientLogin

The body must contain the following parameters (using the application/x-www-form-
urlencoded content type):

Email: Your Google email (for example, raymond.yee@gmail.com)

Password: Your Google password

source: A string of the form companyName-applicationName-versionID to identify
your program (for example, mashupguide.net-Chap7-v1)

service: The name of the Google service, which in this case is blogger

Using the example parameters listed here, you can package up the authorization
request as the following curl invocation:

curl -v -X POST -d "Passwd={passwd}&source=mashupguide.net-Chap7-v1& ~CCC
Email=raymond.yee%40gmail.com&service=blogger" ~CCC
https://www.google.com/accounts/ClientLogin

If this call succeeds, you will get in the body of the response an Auth token (of the
form Auth=[AUTH-TOKEN]). Retain the AUTH-TOKEN for your next calls.

Figuring Out Your Blogger User ID
If you don’t have a blog on Blogger.com, create one here:
http://www.blogger.com/create-blog.g

Now figure out your Blogger user ID by going to and noting the URL associated
with the View link (beside the Edit Profile link):
http://www.blogger.com/home

Your View link will be of the following form:
http://www.blogger.com/profile/{userID}

For example, my blog profile is as follows:
http://www.blogger.com/profile/13847941708302188690

So, my user ID is 13847941708302188690.

Getting a List of a User’s Blogs and a Blog’s Posts
Note that Blogger lists user blogs in a user’s profile:
http://www.blogger.com/profile/{userID}

From an API point of view, you can retrieve an Atom feed of a user’s blog here:
http://www.blogger.com/feeds/{userID}/blogs

That the list of blogs is an Atom feed and not some custom-purpose XML (such as
that coming out of the Flickr API) is useful. You can look at the feed of your blogs to
pull out the blog ID for one of your blogs. For instance, one of my blogs is entitled
“Hypotyposis Redux” and is listed in the feed with the following tag:
<id>tag:blogger.com,1999:user-354598769533.blog-5586336</id>

From this you can determine its blog ID of 5586336. With this blogID, you can now
send HTTP GET requests to retrieve an Atom feed of posts here:
http://www.blogger.com/feeds/{blogID}/posts/default

For example:
http://www.blogger.com/feeds/5586336/posts/default

Creating a New Blog Entry
Let’s now look at how to create a new post. A central design idea behind the Atom
Publishing Protocol and hence its derivatives—GData generally and the Blogger API
specifically—is the notion of a uniform interface based on the standard HTTP methods.
At this point, it’s useful to refer to the “Methods Definition” of the HTTP 1.1
specification (http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html), specifically
the definition for POST:

The POST method is used to request that the origin server accept the entity
enclosed in the request as a new subordinate of the resource identified by
the Request-URI in the Request-Line.

You may be surprised to read this definition of the POST method, considering, for
instance, how POST is used for every single SOAP 1.1 call bound to HTTP—whether
the call is for retrieving a simple piece of information, creating a new resource, or
deleting it.

Let’s see how to create an HTTP POST request to create a new blog entry and
confirm how the process follows the earlier definition:

 1. Create a blog entry formatted as an <entry> Atom element, something like this:

<entry xmlns='http://www.w3.org/2005/Atom'>
 <title type='text'>Using Blogger to demo APP</title>
 <content type='xhtml'>
 <div xmlns='http://www.w3.org/1999/xhtml'>
 <p>This message is being created from invoking the blogger
APP-based API.</p>
 <p>This process is documented at <a href="http://code.google.com/
apis/blogger/developers_guide_protocol.html#CreatingPosts">Blogger Data
API -- Creating Posts</p>
 </div>
 </content>
 <author>
 <name>Raymond Yee</name>
 <email>raymond.yee@gmail.com</email>
 </author>
</entry>

 2. Save the file, say with the filename blogger.message.1.xml.

 3. Issue the following curl invocation to POST the contents of your file to
http://www.blogger.com/feeds/{blogID}/posts/default—which is the feed of all
your entries for the blog—to create a new entry for the blog (a “new subordinate
of the resource identified by the Request-URI”).

curl -X POST -v --data-binary "@blogger.message.1.xml" -H "Content-Type: ~CCC
application/atom+xml " -H "Authorization: GoogleLogin auth=[AUTH-TOKEN]" ~CCC
http://www.blogger.com/feeds/{blogID}/posts/default

 4. If things go fine, you’ll get an HTTP 201 Created code and an <entry> holding the
new post. This <entry> tells you things such as the post ID of your new entry. The
response will look like the following:

HTTP/1.1 201 Created
Content-Type: application/atom+xml; charset=UTF-8
Cache-Control: max-age=0, must-revalidate, private
Location: http://www.blogger.com/feeds/5586336/posts/default/409227349217351
7704
Content-Location: http://www.blogger.com/feeds/5586336/posts/default/4092273
492173517704
Transfer-Encoding: chunked
Date: Sat, 25 Aug 2007 14:38:49 GMT
Server: GFE/1.3
<?xml version='1.0' encoding='UTF-8'?><?xml-stylesheet href="http://www.b
logger.com/styles/atom.css" type="text/css"?><entryxmlns='http://www.w3.o
rg/2005/Atom'><id>tag:blogger.com,1999:blog-5586336.post-4092273492173517
704</id><published>2007-08-25T07:38:00.001-07:00</published><updated>2007
-08-25T07:38:49.607-07:00</updated><title type='text'>Using Blogger to de
mo APP</title><content type='html'>
 <div xmlns='http://
www.w3.org/1999/xhtml'>

 <p>This message is being created from invoking the blogger APP-
based API.</p>
 <p>This process is documented
at <a href='http://code.google.com/apis/blogger/developers_guide_proto
col.html#CreatingPosts'>Blogger Data API -- Creating Posts&l
t;/p>
 </div>
 </content><link rel='al
ternate' type='text/html' href='http://hypotyposis.blogspot.com/2007_08_0
1_archive.html#4092273492173517704' title='Using Blogger to demo APP'/><l
ink rel='replies' type='applicati* Connection #0to host www.blogger.com l
eft intact* Closing connection #0

 5. In this example, the POST request created a new blog entry with a post ID of
40922734921735177.

Updating the Blog Entry
You can update your blog entry using an HTTP PUT request, in accordance to the HTTP
1.1 specification that states the following:

The PUT method requests that the enclosed entity be stored under the
supplied Request-URI. If the Request-URI refers to an already existing
resource, the enclosed entity SHOULD be considered as a modified version
of the one residing on the origin server.

Let’s package this request for curl after first creating an updated message in the
blogger.message.2.xml file:

curl -X PUT -v --data-binary "@blogger.message.2.xml" -H "Content-Type: ~CCC
application/atom+xml " -H "Authorization: GoogleLogin auth=[AUTH-TOKEN]" ~CCC
http://www.blogger.com/feeds/{blogID}/posts/default/{postID}

If you are unfamiliar with using the HTTP PUT method, you’re hardly alone. As
mentioned in Chapter 6, there is little support for it. (Remember, for instance, that the
HTML forms define the GET and POST methods.) Recognizing that PUT might not be
supported by the client doing the entry update (or that firewalls might block PUT
requests), you can tunnel the PUT request through a POST request like so:

curl -X POST -v --data-binary "@blogger.message.2.xml" -H "X-HTTP-Method-
Override: ~CCC
PUT" -H "Content-Type: application/atom+xml " -H "Authorization: GoogleLogin
~CCC
auth=[AUTH-TOKEN]"
http://www.blogger.com/feeds/{blogID}/posts/default/{postID}

Deleting a Blog Entry
You can use the HTTP DELETE method to delete an entry but send that request to the
URL of the entry itself. As a curl invocation, the request looks like this:

curl -X DELETE -v -H "Content-Type: application/atom+xml " -H "Authorization:
~CCC
GoogleLogin auth=[AUTH-TOKEN]" ~CCC
http://www.blogger.com/feeds/{blogID}/posts/default/{postID}

As with updating a blog entry, you can tunnel a DELETE request through an HTTP
POST request using an “X-HTTP-Method-Override: DELETE” request header.

Using the Blogger API As a Uniform Interface Based on HTTP
Methods
Now that you have seen how to use the Blogger API to retrieve feeds of blogs and blog
entries, create new blog entries, update an entry, and delete an entry, you should notice
how all these actions are performed while hewing closely to HTTP methods as they are
actually defined in the HTTP specification. This pattern of using the HTTP methods as
the fundamental methods of the API, in fact, repeats itself in all the APIs that are based
on the Atom Publishing Protocol and therefore GData. Thus, the uniform interface of
GData is the full collection of standard HTTP methods.

Summary
In this chapter, I discussed how to consume web APIs that use the XML-RPC and
SOAP/WSDL protocols. Although these protocols, especially SOAP and WSDL, are
geared toward simplifying the process for making calls to web services, they sometimes
are fragile in practice. Consequently, if you use them, you should learn how to debug
them with the techniques I showed you in this chapter.

With techniques to work with REST, XML-RPC, and SOAP web APIs in hand, you
can then start moving beyond Flickr to look at a wide range of APIs. I showed you how
to use Programmableweb.com to learn about those APIs and to draw some broad
conclusions about APIs, the protocols they use, which ones are popular, and which
subject matter they cover. I concluded this chapter with a study of the YouTube API (as
an example of a simple REST API other than Flickr) and the Blogger API (as an
instance of a uniform interface intimately tied to the HTTP methods). In the next
chapter, you’ll study JavaScript-based APIs and look at how to consume web APIs in
the browser.

	XML-RPC
	What’s Happening on the Wire?
	Using Wireshark and curl to Analyze and Formulate HTTP Messages
	Parsing XML-RPC Traffic

	SOAP
	The Dream: Plug-and-Go Functionality Through WSDL and SOAP
	geocoder.us
	Using the oXygen XML Editor
	Using Python’s SOAPpy
	Using PHP PEAR::SOAP

	Amazon ECS
	The Flickr API via SOAP

	Learning About Specific Web APIs
	Programmableweb.com
	YouTube
	GData and the Blogger API
	Obtaining an Authorization Token
	Figuring Out Your Blogger User ID
	Getting a List of a User’s Blogs and a Blog’s Posts
	Creating a New Blog Entry
	Updating the Blog Entry
	Deleting a Blog Entry

	Using the Blogger API As a Uniform Interface Based on HTTP Methods

	Summary

