
PART 2

Remixing a Single Web
Application Using Its API
In Part I, we looked at how to recombine information without resorting to formal

programming techniques. There is a lot that can be done by carefully examining

various web applications from the perspective of an end user looking for

integrative opportunities. We studied, for instance, how you can recombine

information through manipulating URLs, introducing tags, and connecting feeds

from one application to another.

In the rest of the book, we’ll take on the programmer’s perspective. In the first

two chapters in this part, for example, we turn to learning about how to use web

services, starting from the concrete example of Flickr (Chapter 6) and then

contrasting and comparing Flickr to other examples (Chapter 7). In Chapter 8, we

turn to Ajax-based and JavaScript-based widgets, building upon what we learn in

Chapter 6 and Chapter 7.

CHAPTER 6

Learning Web Services APIs
Through Flickr
Flickr is an excellent playground for learning XML web services. Among other reasons,
Flickr offers clear documentation, an instructive API Explorer that lets you try the API
through a browser, and lots of prior art to study in terms of remixes and mashups.
Hundreds of third-party apps are using the Flickr API.

As I discussed in previous chapters (especially Chapter 2), application programming
interfaces (APIs) are the preferred way of programming a website and accessing its data
and services, although not all websites have APIs. We looked at a wide range of things
you can do without doing much programming, which in many cases means not resorting
to the API. But now we turn to using APIs. Don’t forget what you learned while looking
at end-user functionality, because you will need that knowledge in applying APIs.

By the end of this chapter, you will see that the Flickr API is an extensive API that
can do many things using many options. The heart of the API is simple, though. I’ll start

this chapter by presenting and analyzing perhaps the simplest immediately useful thing
you can do with the Flickr API. I’ll walk you through that example in depth to show you
conceptually how to use the search API and how to interpret the results you get. After
walking you through how to make that specific request, I’ll outline the various ways in
which the example can be generalized.

After an overview of the policy and terms of service surrounding the API, I’ll show
you how to make sense of the Flickr documentation and how to use the excellent Flickr
API Explorer to study the API. I’ll revisit in depth the mechanics of making a basic call
of a Flickr API method, using it as an opportunity to provide a tutorial on two
fundamental techniques: processing HTTP requests and parsing XML. I then
demonstrate how to knit those two techniques to create a simple HTML interface based
on the photo search API.

With an understanding of how to exercise a single method in hand, you’ll then look
at all the API methods in Flickr. I’ll demonstrate how to use the reflection methods in
the Flickr API to tell you about the API itself. I’ll next explain the ways in which you
can choose alternative formats for the requests and responses in the API, laying the
foundation for a discussion of REST and SOAP that I’ll revisit in the next chapter.

By that point in the chapter, you will have done almost everything you can do with
authorization, the trickiest part of the API. Flickr authorization can confusing if you do
not understand the motivation behind the steps in the authorization dance. I’ll explain
the mechanics of the authorization scheme in terms of what Flickr must be
accomplishing in authorization—and how all the technical pieces fit together to
accomplish those design goals. It’s an involved story but one that might elucidate for
you other authentication schemes out there with similar design constraints. After the
narrative, I’ve included some PHP code that implements the ideas.

For practical use of the Flickr API to make mashups, you probably do not want to
work so close to the API itself but instead use API kits or third-party language-specific
wrappers. Therefore, I’ll survey briefly three of the PHP API kits for Flickr. I’ll
conclude this chapter by pointing out some of the limitations of the Flickr API with
respect to what’s possible with the Flickr user interface.

An Introduction to the Flickr API
It’s useful to start with a simple yet illustrative example of the Flickr API before diving
into the complexities that can easily obscure the simple idea at the heart of the API. The
API is designed for you as a programmer to send requests to the API and get responses
that are easy for you to decipher with your program. In earlier chapters, especially
Chapter 2, you learned about you can use the URL language of Flickr to access
resources from Flickr. However, for a computer program to use that information, it
would have to screen-scrape the information. Screen-scraping is a fragile and
cumbersome process. The Flickr API sets a framework for both making requests and
getting responses that are well defined, stable, and convenient for computer programs.

Before you proceed any further, sign up for a Flickr API key so that you can follow
along with this example (see “Obtaining a Flickr API Key”).

OBTAINING A FLICKR API KEY

You need a key to use the Flickr API. A key is a string of numbers and letters that identifies you as the
source of an API request. That is, when you make a call of the API, you typically need to pass in your
key (or some other parameter derived from your key). You get a key through registering your application
with Flickr:

http://www.flickr.com/services/api/keys/apply/

Get your own API key to try the exercises in this chapter and the following chapters. You can see
the list of your current keys here:

http://www.flickr.com/services/api/keys/

In the next chapter, you will see that keys are a common mechanism used in other application
APIs. Through keys, the API provider knows something about the identity of an API user (typically at
least the API key holder’s e-mail address if nothing else) and monitors the manner in which a user is
accessing the API (such as the rate and volume of calls and the specific requests made). Through such
tracking, the API provider might also choose to enforce the terms of use for the API—from contacting
the user by e-mail to shutting down access by that key...to suing the user in extreme cases!

Once you have your key, let’s make the simplest possible call to the Flickr API.
Drop the following URL in your browser:
http://api.flickr.com/services/rest/?method=flickr.test.echo&api_key={api-key}

where api-key is your Flickr API key. For this request, there are two parameters: method,
which indicates the part of the API to access, and api_key, which identifies the party
making the API request. Flickr produces the following response corresponding to your
request:

<?xml version="1.0" encoding="utf-8" ?>
<rsp stat="ok">
<method>flickr.test.echo</method>
<api_key>[API-KEY]</api_key>
</rsp>

Note that the entity body of the response is an XML document containing your key.
Let’s now consider a slightly more complicated call to the Flickr API that returns

something more interesting. Let’s ask Flickr for photos with a given tag. You learned in
Chapter 2 that the corresponding URL in the Flickr UI for pictures corresponding to a
given tag (say, the tag puppy) is as follows:
http://www.flickr.com/photos/tags/{tag}/

For example:
http://www.flickr.com/photos/tags/puppy/

The corresponding way to get from the Flickr API to the most recently uploaded
public photos for a tag is like so:

http://api.flickr.com/services/rest/?method=flickr.photos.search&api_key={api_ke
y}
&tags={tag}&per_page={per_page}

When you substitute your API key, set tag to puppy, and set per_page to 3 to issue
the following call:

http://api.flickr.com/services/rest/?method=flickr.photos.search&api_key={api_ke
y}
&tags=puppy&per_page=3

you will get something similar to the following:

<?xml version="1.0" encoding="utf-8" ?>
<rsp stat="ok">
<photos page="1" pages="96293" perpage="3" total="288877">
 <photo id="1153699093" owner="7841384@N07" secret="d1fba451c9" server="1023"
 farm="2" title="willy after bath and haircut" ispublic="1" isfriend="0"
 isfamily="0" />
 <photo id="1154506492" owner="7841384@N07" secret="881ff7c4bc" server="1058"
 farm="2" title="rocky with broken leg" ispublic="1" isfriend="0"
 isfamily="0" />
 <photo id="1153588011" owner="90877382@N00" secret="8a7a559e68" server="1288"
 farm="2" title="DSC 6503" ispublic="1" isfriend="0" isfamily="0" />
</photos>
</rsp>

What happens in this Flickr API call? In the request, you ask for the three most
recently uploaded public photos with the tag puppy via the flickr.photos.search
method. You get back an XML document in the body of the response. I’ll show you
later in the chapter the mechanics of how to parse the XML document in languages such
as PHP. For the moment, notice the information you are getting in the XML response:

 * Within the rsp root element, you find a photos element containing three child
photo elements.

 * Attributes in the photos element tell you a number of facts about the photo: the
total attribute is the number of public photos tagged with puppy (288,877), the
perpage attribute is the number of photo elements actually returned in this
response (3), the page attribute tells you which page corresponds to this response
(1), and the pages attribute is the total number of pages (96,293), assuming a page
size of perpage.

Note Just as with the human user interface of Flickr, you get API results as a series of pages. (Imagine
if the API were to send you data about every puppy picture in one shot!) The default value for perpage is
100, and the maximum value is 500. I choose 3 in this example so that you can easily study the entire
response.

 * Each of the photo elements has attributes that enable you to know a bit about what
the photo is about (title), map them to the photo’s various URLs (id, owner,
secret, server, and farm), and tell you about the photo’s visibility to classes of
users (ispublic, isfriend, and isfamily).

Let’s now consider two related issues about this pattern of request and response:

 * What does this XML response mean?

 * What can you do with the XML response?

What Does This XML Response Mean?
The user interface (UI) and the API give you much of the same information in different
forms, meant for different purposes. The requests for the UI and the API are both HTTP
GETs—but with their corresponding URLs and parameters. In the UI, the body of the
response is HTML + JavaScript for display in a web browser. In the API, the response
body is XML, meant for consumption by a computer program. (Remember, you learned
about XML feeds in Chapter 4. The format of the XML is not the same as RSS or Atom,
but you get the benefits of stuff coming back in XML instead of HTML—you don’t
have to screen-scrape the information. Also remember from the discussion in Chapter 2
that it is possible to screen-scrape HTML + JavaScript, but it’s not ideal.)

Let’s see how to convince ourselves of the correspondence of the information in the
UI and the API. It’s very powerful to see this correspondence—the same information is
in the UI and from the API—because you’ll get a vivid visual confirmation that you
understand what’s happening in the API. Let’s return to comparing the following (when
you are logged out of Flickr—to make sure you see only public photos):
http://www.flickr.com/photos/tags/puppy/

with the following:

http://api.flickr.com/services/rest/?method=flickr.photos.search&api_key={api_ke
y}
&tags=puppy&per_page=3

What type of comparisons can you do?

 * You can compare the total numbers of photos in the UI and the API (which you
might expect to be same but are not quite the same because of privacy options—
see the “Why Are Flickr UI Results Not the Same As Those in the API?”
sidebar).

 * You can map the information about the photo elements into the photo URLs in
order to see what photos are actually being referred to by the API response.

With what you learned in Chapter 2 and with the attributes from the photo element,
you can generate the URL for the photo. Take, for instance, the first photo element:

<photo id="1153699093" owner="7841384@N07" secret="d1fba451c9" server="1023"
 farm="2" title="willy after bath and haircut" ispublic="1" isfriend="0"
 isfamily="0" />

With this you can tabulate the parameters listed in Table 6-1.

Table 6-1. Parameters Associated with Photo 1153699093

Parameter Value
photo-id 1153699093

farm-id 2

server-id 1023

photo-secret d1fba451c9

file-suffix jpg

user-id 7841384@N07

Remember, the URL templates for the context page of a photo is as follows:
http://www.flickr.com/photos/{user-id}/{photo-id}/

And the link to the medium-sized photo is as follows:
http://farm{farm-id}.static.flickr.com/{server-id}/{photo-id}_{photo-secret}.jpg

So, the following are the URLs:

http://www.flickr.com/photos/7841384@N07/1153699093/
http://farm2.static.flickr.com/1023/1153699093_d1fba451c9.jpg

You can follow the same procedure for all the photos—but one would probably be
enough for you to use to compare with the photos in the UI. (You’re likely to see the
same photo from the API in the UI and hence confirm that the results are the same.)

Note You might wonder how you derive the URL for the original image. Assuming that the original
photo is publicly accessible at all, you add &extras=original_format to the query to get the
originalsecret and originalformat attributes.

WHY ARE FLICKR UI RESULTS NOT THE SAME AS THOSE IN THE API?

The information available in the Flickr API and in the Flickr UI are closely aligned, so much so that it’s
easy to think they are the same. Not so. You as a Flickr user can set whether your photos are visible to
site-wide searches in the Flickr UI and whether your photos are visible to other users via the API at the
following location:

http://flickr.com/account/prefs/optout/?from=privacy

If any user with public photos tagged with puppy has enabled results from one type but not the
other type of search to be visible, then what you get from the API and the UI will be different when you
look for puppy-tagged photos. I still expect that the results will be similar since I would guess that most
people have not hidden their public photos from the public search or the API.

What Can You Do with the XML Response?
Now that you know that you can generate an HTML representation of each photo, let’s
think about what you use flickr.photos.search for. Later in the chapter, I’ll walk you
through the details of how to generate a simple HTML interface written in PHP. Using
that method alone and a bit of web programming, you can generate a simple Flickr
search engine that lets you page through search results. You can do many other things as
well. For example, you could generate an XML feed from this data. With feeds coming
out the API, you’d be able to use all the techniques you learned in Chapter 4 (including
mashing up feeds with Yahoo! Pipes). You might not have all the information you could

ever want; there are other methods in the Flickr API that will give you more information
about the photos, and I will show you how to use those methods later in the chapter.

Where to go from here? First, you won’t be surprised to learn that many other
parameters are available to you for flickr.photos.search given how many search
options there are in the Flickr UI for search (see Chapter 2 for a review). You can learn
more about those parameters by reading the documentation for the method here:
http://www.flickr.com/services/api/flickr.photos.search.html

Here you will see documented all the possible arguments you can pass to the
method. In addition, you see an example response that, not surprisingly, should look
similar to the XML response we studied earlier. In addition, you will see mention of two
topics that I glossed over in my example:

Error handling: The carefully constructed simple request should work as described
here. But errors do happen, and Flickr uses an error-handling process that includes
the use of error codes and error messages. Any robust source code you write should
take into account this error handling.

Authorization: The example we looked at involved only public photos. Things get a
lot messier once you work with private photos. In the UI, that means having to
establish a user account and being logged in. With the API, there is a conceptually
parallel process with one twist. Three parties are involved in Flickr authentication;
in addition to the user and Flickr, there is a third-party application that uses the API.
To avoid users having to give their passwords to the third-party application to log in
on their behalf, there’s a complicated dance that could easily obscure the core ideas
behind the API. We’ll look at authentication later in this chapter.

As interesting as flickr.photos.search is (and it is probably the single most useful
and functionally rich Flickr method), you’ll want to see what other methods there are in
the API. I’ll show you how to learn about the diversity of functionality available in the
Flickr API by using, among other things, the very cool Flickr API Explorer.

You’ll find that a good understanding of Flickr’s functionality will come in handy
when you learn how to use the API. (This is a point I was stressing in Chapter 2.)
There’s the ad hoc method of learning the API that is to start with a specific problem
you want to solve—and then look for a specific piece of functionality in the API that
will solve it. You can consult the Flickr API documentation when you need it and use
the Flickr API Explorer. You can also try to take a more systematic approach to
outlining what’s available in the Flickr API (a bit like the detailed discussion of Flickr’s
URL language I presented in Chapter 2). I will outline a method for doing this. This is
cool, because such a method will involve the Flickr API telling us about itself! I will use
that as an opportunity to talk about APIs in general.

A large part of this chapter will cover some of the programming details you will
encounter working with the Flickr API and other APIs. The way I showed you to
formulate the Flickr API through the use of the following:

http://api.flickr.com/services/rest/?method=flickr.photos.search&api_key={api_ke
y}
&tags=puppy&per_page=3

is only one way of three ways to do so. There are also other formats for the response
that Flickr can generate. I’ll cover the different request and response formats in the
“Request and Response Formats” section later in this chapter.

When working with these Flickr web services, you find that a detailed
understanding of HTTP, XML, and request and response formats is helpful—but you’re
likely to want to work at a higher level of abstraction once you get down to doing some
serious programming. That’s when third-party wrappers to the API, what Flickr calls
API kits, come into play. I will cover how to use a number of the PHP Flickr API kits
later in this chapter.

There is a lot of complexity in using APIs, but just don’t forget the essential pattern
that you find in the Flickr API: you make an HTTP request formatted with the correct
parameters, and you get back in your response XML that you can then parse. The rest is
detail.

The bottom line is that you can learn a lot by using and studying the Flickr API. It’s
extremely well designed in so many ways. It’s certainly not perfect—and there are
other, sometimes better, ways of instantiating the certain functionality of an API. A
close study of the Flickr API will help you understand the APIs of other systems—as
you will see in Chapter 7.

API Documentation, Community, and Policy
You can find the official documentation for the Flickr API here:
http://www.flickr.com/services/api/

As you get familiar with the API, I recommend consulting or lurking in two
communities:

 * The Flickr API mailing list (http://tech.groups.yahoo.com/group/yws-flickr/)

 * The Flickr API group on Flickr (http://www.flickr.com/groups/api/)

You can get a feel for what people are thinking about in terms of the API and get
your questions answered too. When you become more proficient with the API, you can
start answering other people’s questions. (The first group is more technically oriented,
and the second one is more focused on the workflow of Flickr.)

Terms of Use for the API
API providers, including Flickr, require assent to terms of service (ToS, also known as
terms of use) for access to the API. The terms of use for the Flickr API are at the
following location:
http://www.flickr.com/services/api/tos/

There is, of course, no substitute for reading the ToS carefully for yourself. Here I
list a few highlights of the ToS, including what it tells you about Flickr and how you
might find similar issues raised in the ToS of other web APIs. Here are some factors:

Commercial vs. noncommercial use: You need to apply for special permission to use
the Flickr API for commercial purposes.

Payment for use: The Flickr API is free for noncommercial use, like many web APIs
are.

Rate limits: The ToS states that you can’t use an “unreasonable amount of
bandwidth.”

Compliance with the user-facing website ToS: Programmatic access to Flickr
content must comply with all the terms that govern human users of Flickr. This
includes, for instance, the requirement to link to Flickr when embedding Flickr-
hosted photos.

Content ownership: You need to pay attention to the ownership of photos, including
any Creative Commons licenses attached to the photos.

Caching: You are supposed to cache Flickr photos for only a “reasonable” period of
time to provide your Flickr service.

Privacy policies: Your applications are supposed to respect (and by proxy enforce)
Flickr’s privacy policy and the photo owner’s settings. You are supposed to have a
clearly articulated privacy policy of your own for the photos you access through the
Flickr API.

Using the Flickr API Explorer and
Documentation
The column on the right at http://www.flickr.com/services/api/ lists all the API
methods available in the Flickr API. There are currently 106 methods in the API
organized in the following 23 groups:

 * Activity

 * Auth

 * Blogs

 * Contacts

 * Favorites

 * Groups

 * Groups.pools

 * Interestingness

 * People

 * Photos

 * Photos.comments

 * Photos.geo

 * Photos.licenses

 * Photos.notes

 * Photos.transform

 * Photos.upload

 * Photosets

 * Photosets.comments

 * Prefs

 * Reflection

 * Tags

 * Test

 * URLs

I’ve already used two methods in the early parts of the chapter: flickr.test.echo
(part of the test group) and flickr.photos.search (part of the photos group). In this
section, I’ll show you how to exercise a specific API method in detail and return to
looking at the full range of methods. Here I use flickr.photos.search for an example.

You can get the documentation for any method here:
http://www.flickr.com/services/api/{method-name}.html

For example:
http://www.flickr.com/services/api/flickr.photos.search.html

Notice the following subsections in the documentation of each method:

 * A description of the method’s functionality.

 * Whether the method requires authentication and, if so, the minimum level of
permission needed: one of none, read, write, or delete. read is permission to read
private information; write is permission to add, edit, and delete metadata for
photos in addition to the read permission; and delete is permission to delete
photos in addition to the write and read permissions.

 * Whether the method needs to be signed. All methods that require authentication
require signing. Some methods, such as all the ones belonging to the auth group
(for example, flickr.auth.getToken) don’t need authentication but must be
signed. I will describe the mechanics of signing later in the chapter.

 * A list of arguments, the name of each argument, whether it is required or
mandatory, and a short description of the argument.

 * An example response.

 * The error codes.

In the documentation, there is a link to the Flickr API Explorer:
http://www.flickr.com/services/api/explore/?method={method-name}

For example:
http://www.flickr.com/services/api/explore/?method=flickr.photos.search

The Flickr API Explorer is my favorite part of the Flickr API documentation. Figure
6-1 shows the API Explorer for flickr.photos.getInfo. For each method, the API
Explorer not only documents the arguments but lets you fill in arguments and call the

method (with your argument values) right within the browser. You have three choices
for how to sign the call:

 * You can leave the call unsigned.

 * You can sign it without attaching any user information.

 * You can sign it and grant the call write permission for yourself (as the logged-in
user).

Insert 858Xf0601.tif

Figure 6-1. The Flickr API Explorer for flickr.photos.getInfo. (Reproduced with
permission of Yahoo! Inc. ® 2007 by Yahoo! Inc. YAHOO! and the YAHOO! logo are

trademarks of Yahoo! Inc.)

When you hit the Call Method button, the XML of the response is displayed in an
iframe, and the URL for the call is displayed below the iframe. You can use the Flickr
API Explorer to understand how a method works. In the case of the unsigned call, you
can copy the URL and substitute your own API key to use it in your own programs.

For example, if you use the Flickr API Explorer to call flickr.photos.search with
the tag set to puppy and then click the Do Not Sign Call button, you’ll get a URL similar
to this:

http://api.flickr.com/services/rest/?method=flickr.photos.search&api_key={api_ke
y}
&tags=puppy

Copy and paste the URL you get from the Flickr API Explorer into a web browser
to convince yourself that in this case of searching for public images, you can now call
the Flickr API through a simple URL that returns results to you in XML.

Note The Flickr API Explorer uses an api_key that keeps changing. But that’s fine because you’re
supposed to use your own API key in your own applications. Substituting your own key is not hard for an
unsigned call.

Now when I click Sign Call As Raymond Yee with Full Permissions, I get the
following URL:

http://api.flickr.com/services/rest/?method=flickr.photos.search&api_key={api_ke
y}
&tags=puppy&auth_token=72157601583650732-e30f91f3313b3d14&
api_sig=3d7a2d1975e9699246a299d2deaf5b70

When I use that URL immediately—before the key expires—I get to perform
searches for puppy-tagged photos with write permission for my user account. This URL
is useful to test the functionality of the method. It’s not so useful for dropping into a
program. Getting it to work is not simply a matter of substituting your own api_key but
also getting a new auth_token and calculating the appropriate api_sig (that is, signing
the call)—tasks that take a couple of more calls to the Flickr API and a bit of

computing. It’s this set of calculations, which makes authorization one of the trickiest
parts of the Flickr API, that I will show you how to do later in the chapter.

Calling a Basic Flickr API Method from PHP
Now that you have used the Flickr API Explorer and documentation to make sense of
the details of a given API method and to package a call in the browser, you will now
learn how to make a call from a simple third-party application that you write. In this
section, I return to the flickr.photos.search example I used earlier in this chapter:

http://api.flickr.com/services/rest/?method=flickr.photos.search&api_key={api_ke
y}
&tags={tag}&per_page={per_page}

Specifically, the following:

http://api.flickr.com/services/rest/?method=flickr.photos.search&api_key={api_ke
y}
&tags=puppy&per_page=3

generates a response similar to this:

<?xml version="1.0" encoding="utf-8" ?>
<rsp stat="ok">
<photos page="1" pages="96293" perpage="3" total="288877">
 <photo id="1153699093" owner="7841384@N07" secret="d1fba451c9" server="1023"
 farm="2" title="willy after bath and haircut" ispublic="1" isfriend="0"
 isfamily="0" />
 <photo id="1154506492" owner="7841384@N07" secret="881ff7c4bc" server="1058"
 farm="2" title="rocky with broken leg" ispublic="1" isfriend="0"
 isfamily="0" />
 <photo id="1153588011" owner="90877382@N00" secret="8a7a559e68" server="1288"
 farm="2" title="DSC 6503" ispublic="1" isfriend="0" isfamily="0" />
</photos>
</rsp>

In the earlier narrative, I described to you how you can extract from the XML
response such quantities as the total number of photos and how to derive from a photo
element such as this:

<photo id="1153699093" owner="7841384@N07" secret="d1fba451c9" server="1023"
 farm="2" title="willy after bath and haircut" ispublic="1" isfriend="0"
 isfamily="0" />

Here are the URLs for the corresponding photo:

http://www.flickr.com/photos/7841384@N07/1153699093/
http://farm2.static.flickr.com/1023/1153699093_d1fba451c9.jpg

In the following sections, I’ll show you how to instantiate that logic into code.
Specifically, we will write a simple third-party Flickr app in PHP that makes a Flickr
API call and converts the response to HTML. We’ll use two important sets of
techniques that I will elaborate on in some detail, HTTP clients and XML processing,
after which I describe how to use these techniques to make the call to Flickr. Here I
focus on PHP, but you can apply these ideas to your language of choice.

Tip When debugging web services, I have found it helpful to use a network protocol analyzer such as
Wireshark (http://en.wikipedia.org/wiki/Wireshark). Properly formulating a web service call
often requires trial and error. Through its support of HTTP, Wireshark lets you see exactly what was sent
and what was received, including HTTP headers, response codes, and entity bodies.

HTTP Clients
Let’s consider first the issue of how to perform an HTTP GET request and retrieve the
response in PHP. The function file_get_contents takes a URL and returns the
corresponding content in a string, provided the allow_url_fopen option is set to true in
the system-wide php.ini. For example:

<?php
// retrieve Atom feed of recent flower-tagged photos in Flickr
$url = "http://api.flickr.com/services/feeds/photos_public.gne?tags=flower&lang=
en-us&format=atom";

$content = file_get_contents($url);
echo $content;
?>

If you are using an instance of PHP for which URL access for file_get_contents is
disabled (which is not uncommon for shared hosting facilities with security concerns),
then you might still be able to use the cURL extension for PHP (libcurl) to perform the
same function. libcurl is documented here:
http://us3.php.net/curl

The following getResource function does what file_get_contents does. Note the
four steps in using the curl library: initializing the call, configuring options, executing
the call, and closing down the handle:

<?php
function getResource($url){
// initialize a handle
 $chandle = curl_init();
// set URL
 curl_setopt($chandle, CURLOPT_URL, $url);
// return results a s string
 curl_setopt($chandle, CURLOPT_RETURNTRANSFER, 1);
// execute the call
 $result = curl_exec($chandle);
 curl_close($chandle);

 return $result;
}
?>

The many options you can configure in libcurl are documented here:
http://us3.php.net/manual/en/function.curl-setopt.php

In this book, I use libcurl for HTTP access in PHP. Should you not be able to use
libcurl, you can use the libcurl Emulator, a pure-PHP implementation of libcurl:
http://code.blitzaffe.com/pages/phpclasses/files/libcurl_emulator_52-7

Note I will often use curl to demonstrate HTTP requests in this book. More information is available at
http://curl.haxx.se/.

A Refresher on HTTP
So, how would you configure the many options of a library such as libcurl? Doing so
requires some understanding of HTTP. Although HTTP is a foundational protocol, it’s
really quite easy to get along, even as programmers, without knowing the subtleties of
HTTP. My goal here is not to describe HTTP in great detail. When you need to
understand the protocol in depth, I suggest reading the official specifications; here’s the
URL for HTTP 1.0 (RFC 1945):
http://tools.ietf.org/html/rfc1945

And here’s the URL for HTTP 1.1:
http://tools.ietf.org/html/rfc2616

You can also consult the official W3C page:
http://www.w3.org/Protocols/

Reading and digesting the specification is not the best way to learn HTTP for most
of us, however. Instead of formally learning HTTP all in one go in its formal glory, I’ve
learned different aspects of HTTP at different times, and because that partial knowledge
was sufficient for the situation at hand, I felt no need to explore the subtleties of the
protocol. It was a new situation that prompted me to learn more. My first encounter with
HTTP was simply surfing the Web and using URLs that had http for their prefix. For a
little while, I didn’t even know that http wasn’t the only possible scheme in a URI—and
that, technically, http:// is not a redundant part of a URI, even if on business cards it
might be. (People understand www.apress.com means an address for a page in web
browser—and the prefix http:// just looks geeky.)

Later when I learned about HTML forms, I learned that there are two possible
values for the method attribute for FORM: get and post.1 (It puzzled me why it wasn’t get
and put since put is often the complement to get.) For a long time, the only difference I
perceived between get and post was that a form that uses the get method generates
URLs that include the name/value pairs of the submitted form elements, whereas post
doesn’t. The practical upshot for me was that get produces addressable URLs, whereas
post doesn’t. I thought I had post figured out as a way of changing the state of resources
(as opposed to using get for asking for information)—and then I learned about the
formal way of distinguishing between safe and idempotent methods (see the “Safe
Methods and Idempotent Methods” sidebar for a further explanation of these terms).
Even with post, it turns out that there is a difference between two different forms of
form encoding stated in the FORM enctype attribute (application/x-www-form-urlencoded
vs. multipart/form-data), a distinction that is not technically part of HTTP but that will
have a practical effect on how you programmatically make certain HTTP requests.2

SAFE METHODS AND IDEMPOTENT METHODS

The HTTP specification defines safe methods and idempotent methods here:

http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html

Safe methods “should not have the significance of taking an action other than retrieval” of a
representation of a resource. You shouldn’t be changing the resource through a safe method. In HTTP,
GET and HEAD methods are supposed to be safe. Unsafe methods that have the potential of altering the
state of the retrieved resource include POST, PUT, and DELETE.

Idempotent methods are those that have the same effect on the resource whether they are
performed once or more than one time. It’s akin to multiplying a number by zero—the result is the same
whether you do it once or more than once. According to the HTTP standard, the GET, HEAD, PUT, and
DELETE methods should be idempotent operations. Moreover, “the methods OPTIONS and TRACE
should not have side effects and so are inherently idempotent.”

 1. http://www.w3.org/TR/html401/interact/forms.html#h-17.13.1

 2. http://www.w3.org/TR/html401/interact/forms.html#h-17.13.4

Formal Structure of HTTP
When I moved from writing HTML to writing basic web applications, I then learned
more about the formal structure of HTTP—and how what I had learned fit within a
larger structure of what HTTP is capable of doing. For instance, I learned that, in
addition to GET and POST, HTTP defines six other methods, among which was a PUT after
all. (It’s just that few, if any, web browsers support PUT.) Let me describe the parts of
HTTP 1.1 request and response messages. (I draw some terminology in the following
discussion from the excellent presentation of HTTP by Leonard Richardson and Sam
Ruby in Restful Web Services.)

An HTTP request is composed of the following pieces:

 * The method (also known as verb or action). In addition to GET and POST, there are
six others defined in the HTTP specification: OPTIONS, HEAD, PUT, DELETE, TRACE,
and CONNECT. GET and POST are widely used and supported in web browsers and
programming libraries.

 * The path—the part of the URL to the right of the hostname.

 * A series of request headers. See http://www.w3.org/Protocols/rfc2616/rfc2616-
sec14.html.

 * A request body, which may be empty.

The parts of the HTTP response include the following:

 * A response code. You can find a long list of codes at
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html. Examples include 200
OK, 400 Bad Request, and 500 Internal Server Error.

 * Response headers. See http://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html.

 * A response body.

Let’s consider the following example:

http://api.flickr.com/services/rest/?method=flickr.photos.search
&api_key={api-key}&tags=puppy&per_page=3

To track the HTTP traffic, I’m using curl (with the verbose option) to make the call.
(You can also use Wireshark to read the parameters of the HTTP request and response):

curl --verbose "http://api.flickr.com/services/rest/?method=flickr.photos.search
&api_key={api-key}&tags=puppy&per_page=3"

This is an edited version of what I get:

* About to connect() to api.flickr.com port 80
* Trying 68.142.214.24... * connected
* Connected to api.flickr.com (68.142.214.24) port 80
> GET /services/rest/?method=flickr.photos.search&api_key={api-key}&tags=puppy
&per_page=3 HTTP/1.1
User-Agent: curl/7.13.2 (i386-pc-linux-gnu) libcurl/7.13.2 OpenSSL/0.9.7e
zlib/1.2.2
libidn/0.5.13
Host: api.flickr.com
Pragma: no-cache
Accept: */*

< HTTP/1.1 200 OK
< Date: Tue, 21 Aug 2007 20:42:54 GMT
< Server: Apache/2.0.52
< Set-Cookie: cookie_l10n=en-us%3Bus; expires=Friday, 20-Aug-10 20:42:54 GMT;
path=/; domain=flickr.com
< Set-Cookie: cookie_intl=deleted; expires=Monday, 21-Aug-06 20:42:53 GMT;
path=/;
domain=flickr.com
< Content-Length: 570
< Connection: close
< Content-Type: text/xml; charset=utf-8
<?xml version="1.0" encoding="utf-8" ?>
<rsp stat="ok">
<photos page="1" pages="97168" perpage="3" total="291503">
 <photo id="1196703288" owner="69161261@N00" secret="d4e5a75664"
server="1412" farm="2" title="Pomeranian" ispublic="1" isfriend="0" isfamily="0"
/>
 <photo id="1196707012" owner="58944004@N00" secret="9d88253b87"
server="1200" farm="2" title="Fraggle" ispublic="1" isfriend="0" isfamily="0" />
 <photo id="1195805641" owner="21877391@N00" secret="311d276ec7"
server="1177" farm="2" title="Blue" ispublic="1" isfriend="0" isfamily="0" />
</photos>
</rsp>

Let’s break down the specifics of this request/response exchange, as shown in Table
6-2 and Table 6-3, respectively.

Table 6-2. The HTTP Request Parameters in a Flickr Call

Parameter Value
method GET
path /services/rest/?method=flickr.photos.search&api_key={api-key}&tags=
 puppy&per_page=3

headers Four headers of the following types: User-Agent, Host (which identifies
api.flickr.com), Pragma, and Accept

response Empty (typical of GET requests)

Table 6-3. The HTTP Response Parameters in a Flickr Call

Parameter Value
Response code 200 OK

Response headers Seven headers of the following types: Date, Server, Set-Cookie
(twice), Content-Length, Connection, Content-Type

Response body The XML document representing the photos that match the query

Keep this example in mind to see how the HTTP request and response are broken
down as you continue through this chapter. Notice the structure of having a document
(in the body) and a set of headers in both the HTTP request and response structure.

Even though you now understand the basic structure of HTTP, the point is to not
have to understand the intricacies of the protocol. You can shield yourself from the
details while still taking advantage of the rich functionality of HTTP with the right
choice of tools and libraries. Richardson and Ruby provide a helpful shopping list of
desirable features in an HTTP client library:

 * Support for HTTPS and SSL certificate validation.

 * Support for what they consider to be the five main HTTP methods: GET, HEAD,
POST, PUT, and DELETE. Some give you only GET. Others let you use GET and POST.

 * Lets you customize the request body of POST and PUT requests.

 * Lets you customize the HTTP request headers.

 * Gives you access to the response code and HTTP response headers—not just the
body of the response.

 * Lets you communicate through an HTTP proxy.

They list the following features as nice options:

 * Lets you request and handle data compression. The relevant HTTP
request/response headers are Accept-Encoding and Encoding.

 * Lets you deal with caching. The relevant HTTP headers are ETag and If-
Modified-Since and ETag and Last-Modified.

 * Lets you deal with the most common forms of HTTP authentication: Basic,
Digest, and WSSE.

 * Lets you deal with HTTP redirects.

 * Helps you deal with HTTP cookies.

They also make specific recommendations for what to use in various languages,
including the following:

 * The httplib2 library (http://code.google.com/p/httplib2/) for Python

 * HttpClient in the Apache Jakarta project
(http://jakarta.apache.org/commons/httpclient/)

 * rest-open-uri, a modification of Ruby’s open-uri to support more than the GET
method (http://rubyforge.org/projects/rest-open-uri/)

XML Processing
Once you have made the HTTP request to the Flickr API, you are left with the second
big task of processing the XML document contained in the response body. The topic of
how to process XML is a large subject, especially when you consider techniques in
multiple languages. What I show you here is one way of parsing XML in PHP 5 through
an example involving a reasonably complicated XML document (with namespaces and
attributes).

The simpleXML library is built into PHP 5, which is documented here:
http://us3.php.net/simplexml

I found the following article particularly helpful to me in understanding how to
handle namespaces and mixed content in simpleXML:
http://devzone.zend.com/node/view/id/688

In the following example, I parse an Atom feed (an example from Chapter 4) and
print various parts of the document. I access XML elements as though they are PHP
object properties (using ->element-name) and the attributes as though they are members
of an array (using ["attribute-name"]), for example, $xml->title and $entry-
>link["href"]. First I list the code and then the output from the code:

<?php
// An example to show how to parse an Atom feed (with multiple namespaces)
// with SimpleXML
create the XML document in the $feed string
$feed=<<<EOT
<?xml version="1.0" encoding="utf-8"?>
<feed xmlns="http://www.w3.org/2005/Atom"
 xmlns:dc="http://purl.org/dc/elements/1.1/">
 <title>Apress :: The Expert's Voice</title>
 <subtitle>Welcome to Apress.com. Books for Professionals,
 by Professionals(TM)...with what the
 professional needs to know(TM)</subtitle>
 <link rel="alternate" type="text/html" href="http://www.apress.com/"/>
 <link rel="self"
 href="http://examples.mashupguide.net/ch06/Apress.Atom.with.DC.xml"/>
 <updated>2007-07-25T12:57:02Z</updated>
 <author>
 <name>Apress, Inc.</name>
 <email>support@apress.com</email>

 </author>
 <id>http://apress.com/</id>
 <entry>
 <title>Excel 2007: Beyond the Manual</title>
 <link href="http://www.apress.com/book/bookDisplay.html?bID=10232"/>
 <id>http://www.apress.com/book/bookDisplay.html?bID=10232</id>
 <updated>2007-07-25T12:57:02Z</updated>
 <dc:date>2007-03</dc:date>
 <summary type="html"
 ><p><i>Excel 2007: Beyond the Manual</i> will introduce
those who are already familiar with Excel basics to more advanced features, like
consolidation, what-if analysis, PivotTables, sorting and filtering, and some
commonly used functions. You'll learn how to maximize your efficiency at
producing
professional-looking spreadsheets and charts and become competent at analyzing
data
using a variety of tools. The book includes practical examples to illustrate
advanced features.</p></summary>
 </entry>
 <entry>
 <title>Word 2007: Beyond the Manual</title>
 <link href="http://www.apress.com/book/bookDisplay.html?bID=10249"/>
 <id>http://www.apress.com/book/bookDisplay.html?bID=10249</id>
 <updated>2007-07-25T12:57:10Z</updated>
 <dc:date>2007-03-01</dc:date>
 <summary type="html"
 ><p><i>Word 2007: Beyond the Manual</i> focuses on new
features of Word 2007 as well as older features that were once less accessible
than
they are now. This book also makes a point to include examples of practical
applications for all the new features. The book assumes familiarity with Word
2003
or earlier versions, so you can focus on becoming a confident 2007
user.</p></summary>
 </entry>
</feed>
EOT;

instantiate a simpleXML object based on the $feed XML
$xml = simplexml_load_string($feed);

access the title and subtitle elements
print "title: {$xml->title}\n";
print "subtitle: {$xml->subtitle}\n";

loop through the two link elements, printing all the attributes for each link.

print "processing links\n";
foreach ($xml->link as $link) {
 print "attribute:\t";
 foreach ($link->attributes() as $a => $b) {
 print "{$a}=>{$b}\t";
 }
 print "\n";

}
print "author: {$xml->author->name}\n";

let's check out the namespace situation

$ns_array = $xml->getDocNamespaces(true);

display the namespaces that are in the document
print "namespaces in the document\n";
foreach ($ns_array as $ns_prefix=>$ns_uri) {
 print "namespace: ${ns_prefix}->${ns_uri}\n";
}
print "\n";

loop over all the entry elements
foreach ($xml->entry as $entry) {
 print "entry has the following elements in the global namespace: \t";

 // won't be able to access tags that aren't in the global namespace.
 foreach ($entry->children() as $child) {
 print $child->getName(). " ";
 }
 print "\n";
 print "entry title: {$entry->title}\t link: {$entry->link["href"]}\n";

 // show how to use xpath to get date
 // note dc is registered already to $xml.
 $date = $entry->xpath("./dc:date");
 print "date (via XPath): {$date[0]}\n";

 // use children() to get at date
 $date1 = $entry->children("http://purl.org/dc/elements/1.1/");
 print "date (from children()): {$date[0]}\n";

 }

add <category term="books" /> to feed -- adding the element will work
but the tag is in the wrong place to make a valid Atom feed.
It is supposed to go before the entry elements
$category = $xml->addChild("category");
$category->addAttribute('term','books');

output the XML to show that category has been added.
$newxmlstring = $xml->asXML();
print "new xml (with category tag): \n$newxmlstring\n";
?>

The output from the code is as follows:

title: Apress :: The Expert's Voice
subtitle: Welcome to Apress.com. Books for Professionals,
by Professionals(TM)...with what the professional needs to know(TM)
processing links
attribute: rel=>alternate type=>text/html href=>http://www.apress.com/

attribute: rel=>self
href=>http://examples.mashupguide.net/ch06/Apress.Atom.with.DC.xml
author: Apress, Inc.
namespaces in the document
namespace: ->http://www.w3.org/2005/Atom
namespace: dc->http://purl.org/dc/elements/1.1/

entry has the following elements in the global namespace: title link id
updated summary
entry title: Excel 2007: Beyond the Manual link:
http://www.apress.com/book/bookDisplay.html?bID=10232
date (via XPath): 2007-03
date (from children()): 2007-03
entry has the following elements in the global namespace: title link id
updated summary
entry title: Word 2007: Beyond the Manual link:
http://www.apress.com/book/bookDisplay.html?bID=10249
date (via XPath): 2007-03-01
date (from children()): 2007-03-01
new xml (with category tag):
<?xml version="1.0" encoding="utf-8"?>
<feed xmlns="http://www.w3.org/2005/Atom"
 xmlns:dc="http://purl.org/dc/elements/1.1/">
 <title>Apress :: The Expert's Voice</title>
 <subtitle>Welcome to Apress.com. Books for Professionals,
by Professionals(TM)...with what the professional needs to know(TM)</subtitle>
 <link rel="alternate" type="text/html" href="http://www.apress.com/"/>
 <link rel="self"
 href="http://examples.mashupguide.net/ch06/Apress.Atom.with.DC.xml"/>
 <updated>2007-07-25T12:57:02Z</updated>
 <author>
 <name>Apress, Inc.</name>
 <email>support@apress.com</email>
 </author>
 <id>http://apress.com/</id>
 <entry>
 <title>Excel 2007: Beyond the Manual</title>
 <link href="http://www.apress.com/book/bookDisplay.html?bID=10232"/>
 <id>http://www.apress.com/book/bookDisplay.html?bID=10232</id>
 <updated>2007-07-25T12:57:02Z</updated>
 <dc:date>2007-03</dc:date>
 <summary type="html"><p><i>Excel 2007: Beyond the
Manual</i> will introduce those who are already familiar with Excel basics
to
more advanced features, like consolidation, what-if analysis, PivotTables,
sorting
and filtering, and some commonly used functions. You'll learn how to maximize
your
efficiency at producing professional-looking spreadsheets and charts and become
competent at analyzing data using a variety of tools. The book includes
practical
examples to illustrate advanced features.</p></summary>
 </entry>
 <entry>

 <title>Word 2007: Beyond the Manual</title>
 <link href="http://www.apress.com/book/bookDisplay.html?bID=10249"/>
 <id>http://www.apress.com/book/bookDisplay.html?bID=10249</id>
 <updated>2007-07-25T12:57:10Z</updated>
 <dc:date>2007-03-01</dc:date>
 <summary type="html"><p><i>Word 2007: Beyond the
Manual</i> focuses on new features of Word 2007 as well as older features
that
were once less accessible than they are now. This book also makes a point to
include
examples of practical applications for all the new features. The book assumes
familiarity with Word 2003 or earlier versions, so you can focus on becoming a
confident 2007 user.</p></summary>
 </entry>
<category term="books"/></feed>

There are certainly alternatives to simpleXML for processing XML in PHP 5, but it
provides a comfortable interface for a PHP programmer to XML documents.

Note When trying to figure out the structures of PHP objects, consider using one of the following
functions: print_r, var_dump, or var_export.

Pulling It All Together: Generating Simple HTML
Representations of the Photos
Now we have the two pieces of technology to send an HTTP request to Flickr and parse
the XML in the response:

 * The getResource function I displayed earlier that uses the libcurl library of PHP 5

 * The simpleXML library to parse the XML response

I’ll now show you a PHP script that uses these two pieces of functionality to prompt
a user for a tag and that returns the list of five HTML-formatted photos for that tag.

Here’s a breakdown of the logical steps that take place in the following script:

 1. It displays the total number of pictures ($xml->photos['total']).

 2. It iterates through the array of photos through an elaboration of the following
loop:

foreach ($xml->photos->photo as $photo) {
 $id = $photo['id'];
}

 3. It forms the URL of the thumbnail and the URL of the photo page through the
logic contained in the following line:

$thumb_url =
 "http://farm{$farmid}.static.flickr.com/{$serverid}/{$id}_{$secret}_t.jpg";

The following is one possible version of such a script.3 (Note the Content-Type
HTTP response header of text/html to keep Internet Explorer happy with XHTML, but
the output is XHTML 1.0 Strict.)
 3. http://examples.mashupguide.net/ch06/flickrsearch.php

<?php
header("Content-Type:text/html");
echo '<?xml version="1.0" encoding="utf-8"?>';
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
 <title>flickrsearch.php</title>
 </head>
 <body>
<?php
if (isset($_GET['tag'])) {
 do_search($_GET['tag']);
} else {
?>
 <form action="<?php echo $_SERVER['PHP_SELF']?>" method="get">
 <p>Search for photos with the following tag:
 <input type="text" size="20" name="tag"/> <input type="submit"
value="Go!"/></p>
 </form>
<?php
}
?>
<?php

uses libcurl to return the response body of a GET request on $url
function getResource($url){
 $chandle = curl_init();
 curl_setopt($chandle, CURLOPT_URL, $url);
 curl_setopt($chandle, CURLOPT_RETURNTRANSFER, 1);
 $result = curl_exec($chandle);
 curl_close($chandle);

 return $result;
}

function do_search($tag) {
 $tag = urlencode($tag);

#insert your own Flickr API KEY here

 $api_key = "[API-Key]";
 $per_page="5";
 $url = "http://api.flickr.com/services/rest/?method=flickr.photos.search
&api_key={$api_key}&tags={$tag}&per_page={$per_page}";

 $feed = getResource($url);
 $xml = simplexml_load_string($feed);
 print "<p>Total number of photos for {$tag}: {$xml->photos['total']}</p>";

http://www.flickr.com/services/api/misc.urls.html
http://farm{farm-id}.static.flickr.com/{server-id}/{id}_{secret}.jpg
foreach ($xml->photos->photo as $photo) {
 $title = $photo['title'];
 $farmid = $photo['farm'];
 $serverid = $photo['server'];
 $id = $photo['id'];
 $secret = $photo['secret'];
 $owner = $photo['owner'];
 $thumb_url = "http://farm{$farmid}.static.flickr.com/{$serverid}/
{$id}_{$secret}_t.jpg";
 $page_url = "http://www.flickr.com/photos/{$owner}/{$id}";
 $image_html= "<img alt='{$title}'
src='{$thumb_url}'/>";
 print "<p>$image_html</p>";
}

} # do_search
?>
 </body>
</html>

Where Does This Leave Us?
This code allows you to search and display some pictures from Flickr. More important,
it is an example of a class of Flickr methods: those that require neither signing nor
authorization to be called. You will see in the next section how to determine which of
the Flickr API methods fall in that category. In the following sections, you’ll look at
generalizing the techniques you have used in studying flickr.photos.search to the other
capabilities of the Flickr API.

The Flickr API in General
What are some approaches to learning the Flickr API? My first suggestion is to look
around the documentation and glance through the list of API methods here:
http://www.flickr.com/services/api/

While you are doing so, you should think back to all the things you know about
Flickr as an end user (aspects I discussed in Chapter 2) and see whether they are
reflected in the API. For example, can you come up with an API call to calculate the
NSID of your own account? What is a URL to return that information? Hint:
flickr.people.findByUsername.

Perhaps the best way to learn about the API is to have a specific problem in mind
and then let that problem drive your learning of the API. Don’t try to learn commit the
entire API to memory—that’s what the documentation is for.

As I argued earlier, calls that require neither signing nor authorization (such as
flickr.photos.search) are the easiest place to start. How would you figure out which
calls those are? You can make pretty good guesses from the names of methods. For
instance, you won’t be surprised that the method flickr.photos.geo.setLocation would
need authorization: you would be using it to change the geolocation of a photo, an act
that would require Flickr to determine whether you have the permission to do so. On the
other hand, the method flickr.groups.pools.getPhotos allows you to retrieve photos for
a given group. A reasonably proficient Flickr user knows that there are public groups
whose photos would be visible to everybody, including those who are not logged in to
Flickr at all. Hence, it’s not surprising that this method would not require signing or
authorization.

Using flickr.reflection Methods
You can get fairly far by eyeballing the list of Flickr methods for ones that do not
require any permission to execute. (Recall the levels of permissions within the Flickr
API: none, read, write, and delete.) It turns out that the Flickr API has a feature that
you won’t find in too many other web APIs: the Flickr API has methods that return
information about the API itself. flickr.reflection.getMethods returns a list of all the
Flickr methods available. flickr.reflection.getMethodInfo takes a given method name
and returns the following:

 * A description of the method

 * Whether the method needs to be signed

 * Whether the method needs to be authorized

 * The minimal permission level needed by the method (0 = none, 1 = read, 2=
write, 3=delete)

 * The list of arguments for the method, including a description of the argument and
whether it is optional

 * The list of possible errors arising from calling the method

For example, let’s look at what the Flickr API tells us about
flickr.photos.geo.setLocation. You can use this format:

http://api.flickr.com/services/rest/?method= flickr.reflection.getMethodInfo
&api_key={api-key}&method_name={method-name}

Specifically, you can use this:

http://api.flickr.com/services/rest/?method=flickr.reflection.getMethodInfo
&api_key={api-key}&method_name=flickr.photos.geo.setLocation

to generate this:

<?xml version="1.0" encoding="utf-8" ?>
<rsp stat="ok">
<method name="flickr.photos.geo.setLocation" needslogin="1" needssigning="1"
 requiredperms="2">
 <description>Sets the geo data (latitude and longitude and, optionally,
the accuracy level) for a photo.

Before users may assign location data to a photo they must define who, by
default,
may view that information. Users can edit this preference at http://www.flickr
.com
/account/geo/privacy/. If a user has not set this preference, the API
method will return an error.</description>
</method>
<arguments>
 <argument name="api_key" optional="0">Your API application key. See here for more
details.</argument>
 <argument name="photo_id" optional="0">The id of the photo to set location
data for.</argument>
 <argument name="lat" optional="0">The latitude whose valid range is -90 to
90. Anything more than 6 decimal places will be truncated.</argument>
 <argument name="lon" optional="0">The longitude whose valid range is -180
to 180. Anything more than 6 decimal places will be truncated.</argument>
 <argument name="accuracy" optional="1">Recorded accuracy level of the
location information. World level is 1, Country is ~3, Region ~6, City ~11,
Street
~16. Current range is 1-16. Defaults to 16 if not specified.</argument>
</arguments>
<errors>
 <error code="1" message="Photo not found">The photo id was either invalid
or was for a photo not viewable by the calling user.</error>
 <error code="2" message="Required arguments missing.">Some or all of the
required arguments were not supplied.</error>
 <error code="3" message="Not a valid latitude.">The latitude argument
failed validation.</error>
 <error code="4" message="Not a valid longitude.">The longitude argument
failed validation.</error>
 <error code="5" message="Not a valid accuracy.">The accuracy argument
failed validation.</error>
 <error code="6" message="Server error.">There was an unexpected problem
setting location information to the photo.</error>
 <error code="7" message="User has not configured default viewing settings
for location data.">Before users may assign location data to a photo they must
define who, by default, may view that information. Users can edit this
preference at

http://www.flickr.com/account/geo/privacy/</error>
 <error code="96" message="Invalid signature">The passed signature was
invalid.</error>
 <error code="97" message="Missing signature">The call required signing but
no signature was sent.</error>
 <error code="98" message="Login failed / Invalid auth token">The login
details or auth token passed were invalid.</error>
 <error code="99" message="User not logged in / Insufficient
permissions">The method requires user authentication but the user was not logged
in,
or the authenticated method call did not have the required permissions.</error>
 <error code="100" message="Invalid API Key">The API key passed was not

valid or has expired.</error>
 <error code="105" message="Service currently unavailable">The requested
service is temporarily unavailable.</error>
 <error code="111" message="Format "xxx" not found">The requested
response format was not found.</error>
 <error code="112" message="Method "xxx" not found">The requested
method was not found.</error>
 <error code="114" message="Invalid SOAP envelope">The SOAP envelope send in
the request could not be parsed.</error>
 <error code="115" message="Invalid XML-RPC Method Call">The XML-RPC request
document could not be parsed.</error>
</errors>
</rsp>

Note specifically that the following:

<method name="flickr.photos.geo.setLocation" needslogin="1" needssigning="1"
 requiredperms="2">

confirms what we had surmised—that it needs authorization and signing because it
requires a minimum permission level of write. Compare that to what we would get for
flickr.photos.search, which is the method that we have used throughout this chapter as
an easy place to start in the API:

<method name="flickr.photos.search" needslogin="0" needssigning="0"
 requiredperms="0">

These reflection methods give rise to many interesting possibilities, especially to
those of us interested in the issue of automating and simplifying the way we access web
APIs. Methods in the API are both similar and different from the other methods. It
would be helpful to be able to query the API with the following specific questions:

 * What are all the methods that do not require any permissions to be used?

 * Which methods need to be signed?

 * What is an entire list of all arguments used in the Flickr API? Which method uses
which argument? Which methods have in common the same arguments?

Caution These reflection methods in the Flickr API are useful only if they are kept up-to-date and provide
accurate information. In working with the reflection APIs, I have run into some problems (for example,
http://tech.groups.yahoo.com/group/yws-flickr/message/3263) that make me wonder the
degree to which the reflection methods are a first-class member of the APIs.

Querying the Flickr Reflection Methods with PHP
As a first step toward building a database of the Flickr API methods that would support
such queries, I wrote the following PHP script to generate a summary table of the API
methods. First there is a flickr_methods.php class that has functions to read the list of
methods using flickr.methods.getMethods and, for each method, convert the data from

flickr.reflection.getMethodInfo into a form that can be serialized and unserialized
from a local file.

<?php
flickr_methods.php
can use this class to return a $methods (an array of methods) and
$methods_info --
directly from the Flickr API or via a cached copy

class flickr_methods {

 protected $api_key;

 public function __construct($api_key) {
 $this->api_key = $api_key;
 }

 public function test() {
 return $this->api_key;
 }

generic method for retrieving content for a given url.
 protected function getResource($url){
 $chandle = curl_init();
 curl_setopt($chandle, CURLOPT_URL, $url);
 curl_setopt($chandle, CURLOPT_RETURNTRANSFER, 1);
 $result = curl_exec($chandle);
 curl_close($chandle);

 return $result;
 }

return simplexml object for $url if successful with specified number of
retries
 protected function flickrCall($url,$retries) {
 $success = false;
 for ($retry = 0; $retry < $retries; $retry++) {
 $rsp = $this->getResource($url);
 $xml = simplexml_load_string($rsp);
 if ($xml["stat"] == 'ok') {
 $success = true;
 break;
 }
 } // for
 if ($success) {
 return $xml;
 } else {
 throw new Exception("Could not successfully call Flickr");
 }
 }

go through all the methods and list

 public function getMethods() {

 // would be useful to return this as an array (later on, I can have another
 // method to group them under common prefixes.)

 $url =
"http://api.flickr.com/services/rest/?method=flickr.reflection.getMethods
&api_key={$this->api_key}";
 $xml = $this->flickrCall($url, 3);
 foreach ($xml->methods->method as $method) {
 //print "${method}\n";
 $method_list[] = (string) $method;
 }
 return $method_list;
 }

get info about a given method($api_key, $method_name)

 public function getMethodInfo($method_name) {

 $url =
 "http://api.flickr.com/services/rest/?method=flickr.reflection.getMethodInfo
&api_key={$this->api_key}&method_name={$method_name}";
 $xml = $this->flickrCall($url, 3);
 return $xml;
 }

get directly from Flickr the method data
returns an array with data
 public function download_flickr_methods () {

 $methods = $this->getMethods();

 // now loop to grab info for each method

this counter lets me limit the number of calls I make -- useful for testing
 $limit = 1000;
 $count = 0;

 foreach ($methods as $method) {

 $count += 1;
 if ($count > $limit) {
 break;
 }

 $xml = $this->getMethodInfo($method);
 $method_array["needslogin"] = (integer) $xml->method["needslogin"];
 $method_array["needssigning"] = (integer) $xml->method["needssigning"];
 $method_array["requiredperms"] = (integer) $xml->method["requiredperms"];
 $method_array["description"] = (string) $xml->method->description;
 $method_array["response"] = (string) $xml->method->response;
 // loop through the arguments
 $args = array();
 foreach ($xml->arguments->argument as $argument) {

 $arg["name"] = (string) $argument["name"];
 $arg["optional"] = (integer) $argument["optional"];
 $arg["text"] = (string) $argument;
 $args[] = $arg;
 }
 $method_array["arguments"] = $args;

 // loop through errors
 $errors = array();
 foreach ($xml->errors->error as $error) {
 $err["code"] = (string) $error["code"];
 $err["message"] = (integer) $error["message"];
 $err["text"] = (string) $error;
 $errors[] = $err;
 }
 $method_array["errors"] = $errors;

 $methods_info[$method] = $method_array;
 }

 $to_store['methods'] = $methods;
 $to_store['methods_info'] = $methods_info;
 return $to_store;

 } // download_Flickr_API

store the data
 public function store_api_data($fname, $to_store) {

 $to_store_str = serialize($to_store);
 $fh = fopen($fname,'wb') OR die ("can't open $fname!");
 $numbytes = fwrite($fh, $to_store_str);
 fclose($fh);
 }

convenience method for updating the cache
 public function update_api_data($fname) {

 $to_store = $this->download_flickr_methods();
 $this->store_api_data($fname,$to_store);
 }

restore the data

 public function restore_api_data($fname) {

 $fh = fopen($fname,'rb') OR die ("can't open $fname!");
 $contents = fread($fh, filesize($fname));
 fclose($fh);
 return unserialize($contents);

 }

} //flickr_methods

This form of serialization in the flickr_method class provides some basic caching so
that you don’t have to make more than 100 calls (one for each method) each time you
want to display a summary table—which is what the following code does:

<?php

 require_once("flickr_methods.php");
 $API_KEY = "[API_KEY]";

 $fname = 'flickr.methods.info.txt';

 $fm = new flickr_methods($API_KEY);

 if (!file_exists($fname)) {
 $fm->update_api_data($fname);
 }
 $m = $fm->restore_api_data($fname);

 $methods = $m["methods"];
 $methods_info = $m["methods_info"];

 header("Content-Type:text/html");
 echo '<?xml version="1.0" encoding="utf-8"?>';
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>Flickr methods</title>
 <meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
 </head>
 <body>
 <table>
 <tr>
 <th>method name</th>
 <th>description</th>
 <th>needs login</th>
 <th>needs signing</th>
 <th>permissions</th>
 <th>args (mandatory)</th>
 <th>args (optional)</th>
 </tr>
<?php
 foreach ($methods_info as $name=>$method) {
 $description = $method["description"];
calc mandatory and optional arguments
 $m_args = "";
 $o_args = "";
 foreach ($method["arguments"] as $arg){
 //print "arg: {$arg['name']}\n";
 //print_r ($arg);
 // don't list api_key since it is mandatory for all calls
 if ($arg['name'] != 'api_key') {
 if ($arg["optional"] == '1') {

 $o_args .= " {$arg['name']}";
 } else {
 $m_args .= " {$arg['name']}";
 }
 } //if
 }
 print <<<EOT
 <tr>
 <td>
 {$name}
 </td>
 <td>{$description}</td>
 <td>{$method["needslogin"]}</td>
 <td>{$method["needssigning"]}</td>
 <td>{$method["requiredperms"]}</td>
 <td>{$m_args}</td>
 <td>{$o_args}</td>
 </tr>
EOT;
 }
?>
 </table>
 </body>
</html>

What Else Can Be Done with Reflection?
There’s certainly a lot more you can do with this code. Let me suggest a few ideas:

 * Store the data in a database (relational or XML) that can support a query language
for making the queries that I listed earlier. (A poor person’s approach is to copy
the output of the script into a spreadsheet and work from there.)

 * Create your own version of the Flickr API Explorer, perhaps as a desktop
application, to help you learn about pieces of the API as you have specific
questions.

 * Use the reflection methods as the basis of a new third-party API wrapper that is
able to update itself as the API changes.

Note In all the examples I have shown of the Flickr API, I have used HTTP GET because none of the
examples so far has required any write or delete permissions. If your calls do require write or delete
permissions, you must issue your Flickr call with HTTP POST.

Request and Response Formats
So far in this chapter, I have limited myself to one particular way of formulating a
request to call a Flickr API method and the corresponding default format for the
response. The Flickr API actually supports three different ways of packaging a request
and five different formats for the response. In this section, I describe the choices you

have with respect to request and response formats. Understanding these choices will
help you make sense of APIs other than Flickr’s since you will face similar choices in
working with them.

Regardless of the request or response format used, the Flickr API rests on HTTP.
Hence, we need to remember that making a Flickr API call involves two steps, which is
a reflection of the request and response pattern of the underlying HTTP protocol of the
API:

 * You formulate an HTTP request corresponding to API method and parameters
you want to use. With Flickr, you have a choice of three formats for the request
format: REST (what we have used so far), XML-RPC, and SOAP.

 * You process the HTTP response that includes a payload that is by default XML
but that also can contain JavaScript (JSON) or PHP (input for the PHP
unserialize method).

Note Although web services are not necessarily tied to HTTP (for instance, SOAP can be bound to
SMTP), HTTP is the only transport protocol supported for the Flickr API. However, the vast majority of web
services used, especially for mashups, are made over HTTP. Hence, I don’t cover the use of transport
protocols other than HTTP in this book.

Flickr supports three different request formats to call the methods of the API
(REST, SOAP, and XML-RPC):

 * The REST request format, the simplest one to work with, is similar conceptually
and practically to submitting a request through an HTML form. (That is, you
submit a request through either HTTP GET or POST and use named parameters.) In
the simplest cases, that could be equivalent to setting parameters for a URL to
which you get back some XML that you can parse. Think about the examples I
have presented so far to confirm that this is what has been happening. For Flickr, I
recommend starting with its REST request format.

Note In Chapter 7, I revisit and refine the term REST. What Flickr calls the REST approach is a
commonly used pattern of structuring web services but is more accurately described as a REST-RPC
hybrid.

 * SOAP has an envelope around the request and enables higher levels of
abstraction, but it is more complicated and typically takes more specialized
libraries and tools to deal with than REST. We will return to this subject in the
next chapter, both in the context of Flickr’s SOAP request format and in other
APIs’ SOAP interfaces. SOAP is an important web services technique, especially
among folks who use web services for enterprise work.4

Note In version 1.1 of SOAP, SOAP is an acronym for Simple Object Access Protocol. Version 1.2 of
the SOAP specification indicates that SOAP is no longer an acronym.

 * XML-RPC was, in many ways, the proto-SOAP. It’s most convenient to use
XML-RPC from a library, of which there are many in a variety of languages.

There are current five different formats for Flickr responses: the three corresponding
default response formats (REST, XML-RPC, SOAP) and two specialized response
formats (json and php_serial). In other words, a REST-formatted request generates by
default a REST-formatted response. You can change the format for the response by
using the format parameter.

The default behavior of tying the request and request format is typical for web APIs.
With the exception of the REST-to-JSON pairing, which we will return to in our
discussion of Ajax programming in Chapter 8, the ability to decouple the request format
from the response format is unusual. For instance, with the Flickr API, you issue a
SOAP-formatted request that asks for a REST-formatted response. I’m not aware of any
standard SOAP libraries that can handle such a pairing.
 4. http://en.wikipedia.org/wiki/SOAP

You can see for yourself these five formats in action through a simple REST-
formatted request:

http://api.flickr.com/services/rest/?method=flickr.test.echo
&api_key={api-ky}&format={format}

where format = rest, xmlrpc, soap, json, php_serial, or blank (for the default response
format).

Flickr Authorization
Authentication is a bit tricky to follow, and ultimately you may want to leave the details
to one of the Flickr API kits (covered later in the chapter). However, you may still be
interested in working through the details at least once so that you know what’s going on
below the hood before you use someone else’s library. Besides, there will be other
authentication schemes out there besides Flickr’s that you will want to use. Getting a
solid handle on Flickr’s authentication scheme is good preparation for more quickly
understanding those other authentication schemes.

You can find the specification for Flickr authentication here:
http://www.flickr.com/services/api/auth.spec.html

There are three types of authentication cases to handle with Flickr:

 * Web applications

 * Desktop applications

 * Mobile applications

Each scheme is different because of the differing natures of each type of application.
For example, the author of a web application can configure it to have a URL through

which Flickr would be able to communicate. It’s hard to guarantee that a desktop
application would have a URL through which such communication could happen. In
this book, I cover only the specific case of authentication for web applications. Once
you understand this case, you will be able to understand the others without much
problem.

Three parties are involved in the authentication dance:

 * Flickr

 * A third-party application that is using the Flickr API and that I refer to as the app

 * A person who is both a user of the app and a Flickr user

Authorization is required when an app is calling a Flickr method that requires a
permission level of read, write, or delete—anything but none. Through authorization,
the app is granted a specific permission level by the user to access the Flickr API on the
user’s behalf. Flickr creates a token that ties a specific app with a specific user and a
specific permission level to embody this authorization act. The authentication dance is
all about how that token gets created, used in conjunction with specific API calls, and
can be managed and possibly revoked by the user. The details are a bit complicated
because this process must also fulfill certain design criteria, which you can surmise
from how the authorization scheme is designed:

 * The three parties need to be reliably and securely identified and associated in the
process of authorization.

 * The user must be able to undo an authorization act given to a specific app.

 * The protocol must be done using HTTP and not HTTPS. That is, all the
parameters being passed are visible to potential third-party interlopers. In other
words, knowledge of the token itself should not allow another app to have the
token’s permissions.

 * The app should not need to know anything a priori about a person’s Flickr
identity to secure permission.

Why Passing Passwords Around Doesn’t Work Too Well
The current Flickr authorization scheme is not the first one it used. In the early days of
Flickr, users granted the power to an app to act on their behalf by giving the apps their
Flickr username and password. Doing so meant that in order to revoke an app’s
permission, users would have to change their Flickr password. Of course, doing that
would also instantly revoke permissions of other third-party apps with knowledge of the
user’s password. The new authorization scheme is meant to correct obvious problems
with the old scheme. Why should you as a user have to use your Flickr password for
anything other than your dealings with Flickr? Why should revoking permissions to one
app mean revoking permissions to other apps?

Authorization for Web Apps
Let’s now look at the authorization scheme used with Flickr. We first need to set up
some permissions.

Setting Up the Example of Lois and ContactLister
Let’s now get down to the details of the process of authentication for web-based
applications, keeping the authorization design criteria in mind. Let’s have a specific
example in mind. The app, which I will call ContactLister, displays the list of contacts
for a given Flickr user. It specifically uses the flickr.contacts.getList method, which
requires authorization with read permission. (A Flickr user’s contacts list is private.)
Let’s also make up a hypothetical user called Lois.

Basic Lesson: Flickr Needs to Mediate the Authorization Dance
For ContactLister to get permission from Lois, why couldn’t ContactLister just directly
display a screen asking Lois to give it permission to read her contact list—and then
relay that fact to Flickr? For starters, how does ContactLister prove to Flickr that Lois
did in fact give ContactLister permission to access her photos? In the old days of Flickr,
ContactLister would have Lois’s Flickr username and password. At that time,
ContactLister might as well have been Lois since it’s the Flickr username/password that
Flickr used to authenticate a user.

The solution that Flickr came up with is based on that Flickr needs to establish
unambiguously that Lois is with full knowledge of (that is, not being tricked into) giving
ContactLister (and not some other third-party app) read (and not some other)
permission. To do that, Flickr needs to mediate communication between Lois and
ContactLister.

Step 1: ContactLister Directs Flickr to Ask Lois for Permission
So instead of ContactLister directly prompting Lois for permission, ContactLister
directs Flickr to prompt Lois for read permission by formulating the following Flickr
URL that it directs Lois to:
http://flickr.com/services/auth?api_key={api_key}&perms={perms}&api_sig={api_sig
}

Let’s look at the various arguments. You are familiar with the api_key; perms would
be set to read in this circumstance.

Signing a Call: How Does ContactLister Create and Send One?
The part that is new in this chapter is the api_sig. It is the act of calculating the api_sig
and attaching it to method calls in the Flickr API that we refer to as signing the call. The
purpose of signing a call is to reliably establish the identity of the signer, the one
formulating the URL. Why isn’t the api_key enough to establish the identity of the
caller? In some circumstances, it would be if no one but the author of ContactLister and
Flickr knew this api_key. On another level, Flickr API keys are sent unencrypted every
time a call is made to the Flickr API, akin to passwords being sent in plain text. Hence,
the api_key alone is an insufficient foundation for signing this call. You shouldn’t be
able to easily fake a signature.

When you sign up for a Flickr API key, in addition to getting a key, you get a
corresponding string: secret. As the name implies, you are supposed to keep secret
secret so that in theory only you and Flickr know it. Go to
http://www.flickr.com/services/api/keys/ to see your own keys and secrets.

ContactLister has to use this secret to calculate the api_sig and thereby sign the call.
The api_sig is calculated according to the following algorithm for any Flickr API call:

 * Make a signature string that starts with the secret followed by a concatenation of
all the name/value pairs of the arguments to be passed to Flickr, sorted
alphabetically by name—excluding the api_sig but including method. The values
need to UTF-8 encoded but not URL-encoded.

 * The api_sig is then the hexadecimal digest of the md5 hash of the signature
string.

The following is a Python function that takes a secret and a dictionary of
name/value pairs and returns the corresponding api_sig:

def calcSig(secret,params):
 import md5
 l = params.keys()
 l.sort()
 hash = ''
 for key in l:
 hash += str(key) + params[key].encode('utf-8')
 hash = secret + hash
 api_sig = md5.new(hash).hexdigest()
 return api_sig

Let’s first run through a concrete example and then discuss how this process
constitutes signing the call. Consider the following sample key and secret:

 * Key: 020338ddabd2f41ae7ce9413a8d51429

 * Shared secret: f0fc085289c7677a

The signature string is then as follows:
{secret}api_key{api_key}perms{perms}

which is as follows:
f0fc085289c7677aapi_key{api_key}permsread

The md5 hexadecimal digest of the string is then as follows:
f9258a76e4ad3cb5fa40bd8b0098d119

Therefore, the signed call is as follows:

http://flickr.com/services/auth?api_key={api_key}&perms=read
&api_sig=f9258a76e4ad3cb5fa40bd8b0098d119

What Flickr Makes of the Signed Call
So when ContactLister directs Lois to go to this URL, Flickr first determines the
integrity of this call by performing the same signature calculation as ContactLister did
in the first place: find the secret that corresponds to the api_key, sort all the parameters
by key (except for the api_sig parameter), form the signature string, and then compare it
to the value of the api_sig parameter. If two match up, then Flickr can conclude the call

did indeed come from ContactLister because presumably the author of ContactLister is
the only one other than Flickr who knows the key/secret combination.

You might ask, why can’t someone take the api_sig from the call and reverse the
md5 calculation to derive the secret? Although it’s straightforward to calculate the md5
hash of a string, it’s much more difficult computationally to go in the other direction.
For the purposes here, you should think of this reverse direction for md5 as
practically—but not theoretically—impossible. Moreover, using md5 makes it difficult
to change the parameters of the call. If you change, say, perms=read to perms=delete, you
get a different api_sig, which is very hard to calculate without knowing secret.

Note md5, it turns out, does have limitations as a cryptographic hash function. Researchers have
demonstrated how to take an md5 hash and create another string that will give you the same md5 hash.
Can this weakness be used to issue fake Flickr calls? I don’t know; see
http://en.wikipedia.org/wiki/MD5 for more information.

Step 2: Flickr Asks Lois for Permission on Behalf of ContactLister
At any rate, assuming a properly signed call to http://flickr.com/services/auth, Flickr
now knows reliably that it is indeed ContactLister asking for read permission.
Remember, though, that the end goal, a token, ties three things together: an app, a
permission level, and a user. The call reliably ties the app and permission together for
Flickr. However, the call has no explicit mention of a user at all. There’s no parameter
for user_id, for instance.

That ContactLister doesn’t have to pass to Flickr anything about Lois’s Flickr
account is a virtue—not a problem. Why should a third-party app have to know
anything a priori about a person’s relationship to Flickr? So, how does Flickr figure out
the user to tie to the request by ContactLister for the read permission? The fact is that
it’s Lois—and not someone else—who uses the authorization URL:

http://flickr.com/services/auth?api_key={api_key}&perms=read
&api_sig=f9258a76e4ad3cb5fa40bd8b0098d119

When Lois loads the authorization URL in her browser, Flickr then determines the
user in question. If Lois is logged in, then Flickr knows the user in question is Lois. If
no one is logged in to Flickr, then Lois will be sent through the login process. In either
case, it’s Flickr that is figuring out Lois’s identity as a Flickr user and taking care of her
authenticating to Flickr. In that way, Flickr can establish to its own satisfaction the
identity of the user involved in the authorization dance—rather than trusting
ContactLister to do so.

Now that Flickr knows for sure the identity of the app, the permission level
requested, and the user involved, it still needs to actually ask Lois whether it’s OK to let
ContactLister have the requested read permission. If Lois had not already granted
ContactLister such permission, then Flickr presents to Lois a screen that clearly informs
her of ContactLister’s request. The fact that such a display comes from Flickr instead of
ContactLister directly should give Lois some confidence that Flickr can track what
ContactLister will do with any permissions she grants to it and thereby hold the authors
of ContactLister accountable.

Step 3: Flickr Lets ContactLister Know to Pick Up a Token
Assuming that Lois grants ContactLister read permission, Flickr must now inform
ContactLister of this fact. (Remember, the permission granting is happening on the
Flickr site.) Flickr communicates this authorization act by sending the HTTP GET request
to the callback-URL for ContactLister with what Flickr calls a frob. Flickr knows the
callback-URL to use because part of registering a web application to handle authorization
is specifying a callback URL at the following location:
http://www.flickr.com/services/api/keys/{api-key}/

where the api-key is that for the app. In other words, ContactLister must handle a call
from Flickr of the following form:
callback-URL?frob={frob}

A frob is akin to a session ID. It lets ContactLister know that some form of
authorization has been granted to ContactLister. To actually get the token that
ContactLister needs to use the requested read permission, ContactLister needs to use
flickr.auth.getToken to exchange the frob for the token. Frobs aren’t meant to be the
permanent representation of an authorization act. Frobs expire after 60 minutes or after
flickr.auth.getToken is used to redeem the frob for a token. This exchange ensures that
ContactLister receives a token and that Flickr knows that ContactLister has received the
token. Note that flickr.auth.getToken is also a signed call with two mandatory
arguments: api_key and frob—in addition to api_sig, of course. The returned token is
expressed in the following form (quoting from
http://www.flickr.com/services/api/flickr.auth.getToken.html):

<auth>
 <token>976598454353455</token>
 <perms>write</perms>
 <user nsid="12037949754@N01" username="Bees" fullname="Cal H" />
</auth>

Note that it’s the token that tells ContactLister the details of what is being
authorized: the Flickr user and the permission granted. Now, ContactLister knows the
Flickr identity of Lois—without ever needing Lois to tell ContactLister directly.

Step 4: ContactLister Can Now Make an Authorized and Signed Call
ContactLister can now actually make the call to flickr.contacts.getList. How so? In
addition to signing a call to flickr.contacts.getList, ContactLister adds the appropriate
authorization information by adding the following argument to the call and signing it
appropriately:
auth-token={token}

We should note moreover that Lois, like all users, can revoke any permission she
had previously granted here:
http://flickr.com/services/auth/list.gne

It’s nice for Lois to know that she doesn’t have to convince ContactLister to stop
accessing her account. She just tells Flickr.

Implementation of Authorization in PHP
That’s the narrative of how to do Flickr authorization for web applications. Now let’s
look at it implemented in PHP. There are two pieces of code. The first generates the
authorization URL. (To use it, use your own API key and secret.)

<?php
 $api_key = "";
 $secret = "f0fc085289c7677a";
 $perms = "read";

 function login_link($api_key,$secret,$perms) {
 # calculate API SIG
 # sig string = secret + [arguments listed alphabetically name/value --
 # including api_key and perms]

 $sig_string = "{$secret}api_key{$api_key}perms{$perms}";
 $api_sig = md5($sig_string);

 $url = "http://flickr.com/services/auth?api_key={$api_key}&perms={$perms}
&api_sig={$api_sig}";
 return $url;
 }

 $url = login_link($api_key,$secret,$perms);
?>
<html>
 <body><a href="<?php print($url);?>">Login to Flickr</body>
</html>

To confirm that you have things set up correctly, if you run the app, you should get
a prompt from the Flickr site asking for access (see Figure 6-2).5

Insert 858Xf0602.tif

Figure 6-2. Flickr authorization screen. (Reproduced with permission of Yahoo! Inc. ®
2007 by Yahoo! Inc. YAHOO! and the YAHOO! logo are trademarks of Yahoo! Inc.)

The second piece of code is the authentication-handling script whose URL is the
callback URL registered to the API key. It reads the frob, gets the token, and then lists
the contacts of the user (a type of access that demonstrates that authorization is working,
since without authorization, an app will not be able to access a user’s contact list). To
try this yourself, you will need to create this file and then enter its URL in the Callback
URL field of your app’s key configuration screen at Flickr:6

 5. http://examples.mashupguide.net/ch06/auth.php

 6. http://examples.mashupguide.net/ch06/auth_cb.php

<?php
##insert your own Flickr API KEY here
$api_key = "[API_KEY]";
$secret = "[SECRET]";

$perms = "read";

$frob = $_GET['frob'];

function getResource($url){
 $chandle = curl_init();
 curl_setopt($chandle, CURLOPT_URL, $url);
 curl_setopt($chandle, CURLOPT_RETURNTRANSFER, 1);
 $result = curl_exec($chandle);
 curl_close($chandle);

 return $result;
}

function getContactList($api_key, $secret, $auth_token) {
 # calculate API SIG
 # sig string = secret + [arguments listed alphabetically name/value --
 # including api_key and perms]; don't forget the method call

 $method = "flickr.contacts.getList";
 $sig_string =
 "{$secret}api_key{$api_key}auth_token{$auth_token}method{$method}";
 $api_sig = md5($sig_string);

 $token_url =
 "http://api.flickr.com/services/rest/?method=flickr.contacts.getList
&api_key={$api_key}&auth_token={$auth_token}&api_sig={$api_sig}";
 $feed = getResource($token_url);
 $rsp = simplexml_load_string($feed);

 return $rsp;
}

function getToken($api_key,$secret,$frob) {
 # calculate API SIG
 # sig string = secret + [arguments listed alphabetically name/value --
 # including api_key and perms]; don't forget the method call

 $method = "flickr.auth.getToken";
 $sig_string = "{$secret}api_key{$api_key}frob{$frob}method{$method}";
 $api_sig = md5($sig_string);

 $token_url =
 "http://api.flickr.com/services/rest/?method=flickr.auth.getToken
&api_key={$api_key}&frob={$frob}&api_sig={$api_sig}";
 $feed = getResource($token_url);
 $rsp = simplexml_load_string($feed);

 return $rsp;
}

$token_rsp = getToken($api_key,$secret,$frob);
$nsid = $token_rsp->auth->user["nsid"];
$username = $token_rsp->auth->user["username"];
$auth_token = $token_rsp->auth->token;

$perms = $token_rsp->auth->perms;

display some user info
echo "You are: ", $token_rsp->auth->user["fullname"],"
";
echo "Your nsid: ", $nsid, "
";
echo "Your username: ", $username,"
";
echo "auth token: ", $auth_token, "
";
echo "perms: ", $perms, "
";

make a call to getContactList

$contact_rsp = (getContactList($api_key,$secret,$auth_token));
$n_contacts = $contact_rsp->contacts["total"];
$s = "<table>";
foreach ($contact_rsp->contacts->contact as $contact) {
 $nsid = $contact['nsid'];
 $username = $contact['username'];
 $realname = $contact['realname'];
 $s = $s . "<tr><td>{$realname}</td><td>{$username}</td><td>{$nsid}</td></tr>";
}

$s = $s . "</table>";
echo "Your contact list (which requires read permission)
";
echo "Number of contacts: {$n_contacts}
";
echo $s;
?>

Note Uploading photos to Flickr is a major part of the Flickr API that is not covered in this book. I
suggest reading the documentation (http://www.flickr.com/services/api/upload.api.html)
and using one of the API kits.

Using Flickr API Kits
Once you get the hang of the APIs using REST, you’ll likely get tired of using it
directly in your programming. The details of authorizing users, uploading photos, and
managing a cache of Flickr results (to speed up access) are not things you want to deal
with all the time.

API kits in various programming languages have been written to make it more
comfortable for you to use the API in your language. These tools often express the
Flickr API in terms that are more natural for a given language, by abstracting data,
maintaining sessions, and taking care of some of the trickier bits of the API.

You can find a list of API kits for Flickr here:
http://www.flickr.com/services/api/

In this section I’ll describe briefly some options of API kits for PHP. Currently,
three Flickr API kits are publicized on the Flickr services page. This section shows how
to set them up to do a simple example of a working program for each of the API kits.
You then need to figure out which is the best to use for your given situation.

SETTING UP INCLUDE_PATH AND FLICKR KEYS

Whenever you use third-party libraries, you need to ensure that your PHP path (the include_path
variable) is set properly so that your PHP code can find your libraries. If you have access to php.ini,
by all means use it. You can also use the ini_set() function in PHP to set your include_path
variable within your code. In the following code, I assume that include_path is properly set.

Also, it’s convenient to store your Flickr key and secret in an external file that you can then
include. For the following examples, I have a file named fickr_key.php containing the following:

<?php
define('API_KEY', '[YOUR_KEY]');
define('API_SECRET', '[YOUR_SECRET]');
?>

PEAR::Flickr_API
This kit,7 written by Cal Henderson, is the earliest and simplest of the API kits. To try it
on your hosting platform, make sure you have PEAR installed, and install the library
using the following command:
 7. http://code.iamcal.com/php/flickr/readme.htm

pear install -of http://code.iamcal.com/php/flickr/Flickr_API-Latest.tgz

Here’s a little code snippet to show you its structure:

<?php
 include("flickr_key.php");
 require_once 'Flickr/API.php';
 # create a new api object
 $api =& new Flickr_API(array(
 'api_key' => API_KEY,
 'api_secret' => API_SECRET
));

 # call a method

 $response = $api->callMethod('flickr.photos.search', array(
 'tags' => 'flower',
 'per_page' => '10'
));

 # check the response

 if ($response){
 # response is an XML_Tree root object
 echo "total number of photos: ", $response->children[0]-
>attributes["total"];
 }else{
 # fetch the error
 $code = $api->getErrorCode();
 $message = $api->getErrorMessage();
 }

?>

Why might you want to use PEAR::Flickr_API? It’s a simple wrapper with some
defining characteristics:

 * There’s not much of an abstraction of the method calls. You pass in the method
name. The advantage is that the API will not be out-of-date with the addition of
new Flickr methods. The disadvantage is that one can imagine abstractions that
are more idiomatic PHP.

 * You pass in the API key when creating a new Flickr_API object.

 * The response is an XML_Tree root object.8

My conclusion is that it makes sense to use one of the newer, richer PHP API kits:
phpFlickr or Phlickr; also, more people are actively working on them.

phpFlickr
You can find Dan Coulter’s toolkit at http://phpflickr.com/. It is written in PHP 4,
which is currently an advantage, since PHP 5 is not always readily available. Moreover,
there seems to be a continued active community around phpFlickr. To install and test
the library, following these steps:
 8. http://pear.php.net/package/XML_Tree—this package has been superseded by XML_Serializer
(http://pear.php.net/package/XML_Serializer)

 1. Follow the detailed instructions at http://phpflickr.com/docs/?page=install.
Download the latest ZIP file from http://sourceforge.net/projects/phpflickr. At the
time of writing, the latest is the following:9

http://downloads.sourceforge.net/phpflickr/phpFlickr-2.1.0.tar.gz

or the following:
http://downloads.sourceforge.net/phpflickr/phpFlickr-2.1.0.zip

 2. In theory, PEAR should let me install it, but I was not been able to get it to install
phpFlickr.10 Uncompress the file into a directory so that you can include it. I put it
in a non-PEAR phplib directory and renamed the file to phpFlickr.

 3. Copy and paste the following code as a demonstration of working code:

<?php

include("flickr_key.php");
require_once("phpFlickr/phpFlickr.php");

$api = new phpFlickr(API_KEY, API_SECRET);

Get user's ID

$username = 'Raymond Yee';
if (isset($_GET['username']))
 $username = $_GET['username'];

$user_id = $api->people_findByUsername($username);
$user_id = $user_id['id'];

print $user_id;

?>

Let’s see how phpFlickr works:

 * The constructor has three arguments: the mandatory API key and two optional
parameters, secret and die_on_error (a Boolean for whether to die on an error
condition). Remember that you can use the getErrorCode() and getErrorMsg()
functions of $api.11

 * This is from the official documentation:

 * Apparently, all of the API methods have been implemented in the phpFlickr
class.

 * To call a method, remove the flickr. part of the name, and replace any
periods with underscores. You call the functions with parameters in the
order listed in the Flickr documentation—with the exception of
flickr.photos.search, for which you pass in an associative array.

 * To enable caching, use the phpFlickr::enableCache() function.

Because the naming convention of phpFlickr, which is closely related to that of the
Flickr API, you can translate what you know from working with the API pretty directly
into using phpFlickr.
 9.
 http://sourceforge.net/project/showfiles.php?group_id=139987&package_id=153541&release_id
=488387

10. pear install -of http://downloads.sourceforge.net/phpflickr/phpFlickr-2.1.0.tar.gz gets me “Could
not extract the package.xml file from /home/rdhyee/pear/temp/download/phpFlickr-2.1.0.tar.gz.”

11. http://phpflickr.com/docs/?page=install

Phlickr
Phlickr requires PHP 5 and is not just a facile wrapper around the Flickr API; it
provides new classes that significantly abstract the API. There are significant
advantages to this approach; if the abstraction is done well, you should be able to
program Flickr in a more convenient and natural method in the context of PHP 5 (for
example, you can work with objects and not XML, which you can then turn into
objects). The downside is that you might need to juggle between the Flickr API’s way
of organizing Flickr functionality and the viewpoint of the Phlickr author. Moreover, if
Flickr adds new methods, there is a greater chance of Phlickr breaking as a result—or at
least not being able to keep up with such changes.

The home page for the project is as follows:
http://drewish.com/projects/phlickr/

You can get the latest version of Phlickr from here:
http://sourceforge.net/project/showfiles.php?group_id=129880

The following code is a simple demonstration of Phlickr in action—it uses the
flickr.test.echo method:

<?php
ini_set(
 'include_path',
 ini_get('include_path') . PATH_SEPARATOR . "/home/rdhyee/pear/lib/php"
);

require_once 'Phlickr/Api.php';

#insert your own Flickr API KEY here
define('FLICKR_API_KEY', '[API-KEY]''');
define('FLICKR_API_SECRET', '[SECRET]''');

$api = new Phlickr_Api(FLICKR_API_KEY, FLICKR_API_SECRET);
$response = $api->ExecuteMethod(
 'flickr.test.echo',
 array('message' => 'It worked!'));

print "<hi>{$response->xml->message}</h1>";
?>

http://drewish.com/projects/phlickr/docs/ documents the objects of the library.
To learn more about Phlickr, buy and read Building Flickr Applications with PHP by
Rob Kunkle and Andrew Morton (Apress, 2006). Andrew Morton is the author of
Phlickr.

Note Phlickr must be in a folder called exactly Phlickr for operating systems (such as Linux)
whose filenames are case-sensitive.

Limitations of the Flickr API
The Flickr API is extensive. The methods of the Flickr API are a fairly stable, well-
supported way for your program to access data about most resources from Flickr. As
one would expect, the functionality of the Flickr API overlaps strongly with that of the
Flickr UI—but the two are not identical. There are currently things you can do in the UI
that you can’t do in the API. For example:

 * Although you can access a Flickr group’s photo pool, you can’t read or write to
the group discussions with the API (though you can get at the latest comments in
a group discussion through Flickr feeds).

 * You can’t add, delete, and configure a weblog for your Flickr account including
layout and settings with the API.

 * You can’t add or delete contacts via the API.

 * You can’t delete your Flickr account with the API or do most of the account
management elements such as changing your e-mail or using a different Yahoo!
ID for this Flickr account.

 * There is no support for Flickr collections in the API.

 * I don’t think there is currently support for tag clusters in the API
(http://tech.groups.yahoo.com/group/yws-flickr/message/1596).

Some of limitations of the API are probably intentional design decisions that are
unlikely to change (such as not being able to programmatically delete your entire
account). Other discrepancies reflect that new features in Flickr tend to show up first in
the UI and then in the API. I would guess, for instance, that there will eventually be
support for Flickr collections in the API.

I will point out another class of differences between the API and UI. There is,
however, some information from Flickr that is available from both the UI and the API—
but that is easier to derive from screen-scraping the UI and through using the API. Take
this, for example:
http://www.flickr.com/photos/{user-id}/archives/

This lists for every year and month the number of photos that the user has taken or
uploaded. Accessing this information from the UI involves one HTTP GET and screen-
scraping the HTML. In contrast, generating the same dataset using the Flickr API
requires calculating Unix timestamps for the beginnings and ends of months (for the
time zone of the user, which is not available via the API) so that you can feed those time
boundaries to flickr.photos.getCounts.

What’s the point here? Although the API provides the flexibility to calculate the
number of photos taken or uploaded between any two arbitrary times, the UI for the
archives provides a count of the photos for a very useful default case (that by month),
which turns out to require a bit of work to get from the API. In other words, the UI of an
application gives insight into what the mainstream use cases for the API are.

I’ve found such examples about limitations of APIs with respect to the UI a bit
surprising at first. I would have expected a given functionality to be purposely excluded
from the API (because of a policy decision) or easier to programmatically access via the
UI—but not harder than screen-scraping using the API. Otherwise, there’s a
disincentive to use the API in that case.

Summary
If you have read this long chapter and studied the examples in depth, you should now be
able to see both the conceptual heart of the Flickr API—a bunch of HTTP requests that
look like HTML form submissions and responses that by default return nice-to-parse
XML—and the complexities that arise when dealing with various cases (different
request and response formats, authorization, and the need to abstract the API when
using them in practice). I’m a big believer in learning as much as you can from the API
before taking on authorization. You can use simple calls to solidify your understanding
of HTTP and XML processing. Then you can move on to the more complicated cases
when you are ready.

If you want to make sense of the Flickr API as a whole, focus on tackling specific
problems that get you into exploring parts of the API. The reflection methods, though,
do give you the potential to computationally support your understanding of the API as
well as make more robust libraries for interacting with Flickr.

Understanding the underlying details of Flickr authorization is something you don’t
have to deal with if you don’t want to—turn to your favorite API kit for help. However,

understanding it brings not only intellectual satisfaction but also enables you to better
understand other authorization schemes you may encounter (such as the one for
Amazon S3).

In the next chapter, we’ll turn to web APIs other than Flickr. I will use the lens of
the Flickr API to show you how to explore the bigger world of APIs in general.

	An Introduction to the Flickr API
	What Does This XML Response Mean?
	What Can You Do with the XML Response?

	API Documentation, Community, and Policy
	Terms of Use for the API

	Using the Flickr API Explorer and Documentation
	Calling a Basic Flickr API Method from PHP
	HTTP Clients
	A Refresher on HTTP
	Formal Structure of HTTP

	XML Processing
	Pulling It All Together: Generating Simple HTML Representations of the Photos
	Where Does This Leave Us?

	The Flickr API in General
	Using flickr.reflection Methods
	Querying the Flickr Reflection Methods with PHP
	What Else Can Be Done with Reflection?

	Request and Response Formats
	Flickr Authorization
	Why Passing Passwords Around Doesn’t Work Too Well
	Authorization for Web Apps
	Setting Up the Example of Lois and ContactLister
	Basic Lesson: Flickr Needs to Mediate the Authorization Dance
	Step 1: ContactLister Directs Flickr to Ask Lois for Permission
	Signing a Call: How Does ContactLister Create and Send One?
	What Flickr Makes of the Signed Call

	Step 2: Flickr Asks Lois for Permission on Behalf of ContactLister
	Step 3: Flickr Lets ContactLister Know to Pick Up a Token
	Step 4: ContactLister Can Now Make an Authorized and Signed Call
	Implementation of Authorization in PHP

	Using Flickr API Kits
	PEAR::Flickr_API
	phpFlickr
	Phlickr

	Limitations of the Flickr API
	Summary

