
PART 1

Remixing Information
Without Programming
In Part 1 of this book, we look at how to recombine information without resorting

to formal programming techniques. There is much that can be done by carefully

examining various web applications from the perspective of an end user looking for

integrative opportunities. In Chapter 1, we’ll study in detail several specific

mashups to get you oriented to mashups and to some general themes that we will

continually revisit throughout the book. In Chapter 2, we’ll analyze Flickr, a remix

platform par excellence that we’ll study throughout the book, comparing and

contrasting it with other remixable platforms, including del.icio.us, Google Maps,

and Amazon.com. Chapter 3 shows how user-generated tags are used in Flickr,

del.icio.us, and Technorati and discusses how to create interesting tag-centric

mashups. Chapter 4 discusses RSS and Atom feeds, perhaps the most widespread

dialect of XML, as both a potent technology for sharing information across the Web

and as a specific way to learn about XML. Finally, Chapter 5 uses Flickr’s

integration with weblogs as a jumping-off point for exploring weblogs and wikis and

their programmability. Part 1 lays the foundation for the rest of the book, which

teaches you how to programmatically create mashups.

CHAPTER 1

Learning from Specific
Mashups
Before you set out to build your own mashups, you’ll study some specific examples in
this chapter. Mashups combine content from more than one source into a new integrated
whole. You can understand a specific mashup by answering a number of basic
questions:

 * What is being combined?

 * Why are these elements being combined?

 * Where is the remixing or recombination happening?

 * How are various elements being combined (that is, first in the interface but also
behind the scenes in the technical machinery)?

 * How can the mashup be extended?

This chapter will explore three major examples:

 * Housingmaps.com

 * The Google Maps in Flickr Greasemonkey script

 * Jon Udell’s LibraryLookup bookmarklet

In this chapter, I will analyze these three examples using the previous questions
loosely as a framework. A close study of each of these mashups will be amply rewarded
when you start creating your own mashups.

Looking for Patterns in Mashups
One pattern you will see repeated among mashups that link two web sites is the
combination of three actions:

 1. Data is extracted from a source web site.

 2. This data is translated into a form meaningful to the destination web site.

 3. The repackaged data is sent to the destination site.

Of course, the details differ among the mashups, but this general pattern holds true,
as you will see in the three mashups presented in detail in this chapter. Where the
remixing actually happens differs in the three mashups you’ll see in this chapter: in a
separate application as in Housingmaps.com, in Flickr for the Google Maps in Flickr
script, and in the browser without a change of interface as in the LibraryLookup
bookmarklet.

Although you’ll see this pattern of data extraction, translation, and redirection in the
mashups covered in this chapter, you’ll find other patterns in mashups as well. Chapter
9 will explore those other patterns in detail.

UNDERSTANDING THE TERMINOLOGY

Throughout the book, I use a number of related terms (mashup, remix, recombine, data, and services) to
describe differing aspects of reusing intellectual and creative work to build derivative works. Of course,
reuse—whether in the form of artistic appropriation, scholarly attribution, literary quotation and allusion,
parody, or satire—has a long history throughout human intellectual, creative, and commercial
endeavors. Some terms, such as reuse (as in software reuse or code reuse), have been in popular
usage for a while. Others, such as remix and mashup, have more recently arisen in the context of
discussions around Web 2.0 to apply to the combination of data from disparate sources, often via the
use of XML and XML web services. In some ways, mashups has won out as the term to refer to web

interfaces and applications that combine content into something new, whereas the term remix is
generally about reusing media while still having broader usage (as in remix culture).

The boundary between mashup and remix is a bit fuzzy, though. Mashup and remix are terms
that have their origins in popular music.1 Roughly speaking, a remix is an alternate version of a song,
while a mashup brings together elements of two or more songs. The term mashup has expanded
recently to describe the combination of video from multiple sources in a new video.2 At this point, I will
say that if I wanted to make the parallels from popular music hold up for digital applications, I would use
remix to describe scenarios that are about reusing or repackaging data without combining it with other
content (for example, using the Flickr API to make a web page that has only Flickr images), and I would
reserve mashups to refer to combinations of data from a variety of sources (for example, combining
Flickr photos with photos from Picasa). But the lines are fuzzy and, in my opinion, not worth the effort to
draw too carefully.

Broadly speaking, I focus in this book on software mashups, mostly but not exclusively on web
mashups that are remixing data and services. By data, I mean any digital content, whether it is on a
computer network, on your computer, or on any other device. By services, I roughly mean services as in
service-oriented architecture and software as a service, meaning web services and any applications that
can be reused.

Whereas mashups are strongly associated with Web 2.0, parallel developments going under
such names as composite applications are occurring in enterprise computing and service-oriented
architectures. Composite applications are also concerned with weaving together data and services,
though they usually integrate corporate data and supply chains sitting behind firewalls instead of public
APIs from Google and Amazon. Although mashups and composite applications share common
techniques, they are driven by vastly different cultural factors.

This book focuses on personal information instead of information reuse from an enterprise
perspective. Personal information is distinct for its heterogeneity, its connection to personal information
management, the need for mass customizability, and the many permutations of hardware, software, and
data derived from the unique needs of individuals. Nonetheless, if there are opportunities to draw upon
synergies with enterprise Web 2.0 without going far afield, I will do so here.

1. http://en.wikipedia.org/wiki/Mashup_%28music%29 and http://en.wikipedia.org/wiki/Remix

2. http://en.wikipedia.org/wiki/Mashup_%28video%29

Housingmaps.com
When I explain mashups to others, I typically use the example of the web site
Housingmaps.com, a mashup of Craigslist and Google Maps. Housingmaps.com is
useful in ways that are quick and easy to understand, which invites repeated usage. It
also requires no software beyond a modern web browser. Moreover, Housingmaps.com
takes two already well-known web applications to create something new.

Figure 1-1 shows Housingmaps.com displaying a specific rental listing. Note the
photos of the apartment and the links to Craigslist. All the data is drawn from Craigslist
and then displayed in a Google map.

Insert 858Xf0101.tif

Figure 1-1. Housingmaps.com

What Is Being Combined?
Housingmaps.com takes the list of houses, apartments, and rooms that are for sale or
rent from Craigslist and displays them on a Google map. Note that it was invented by
neither Google nor Craigslist but by an individual programmer, Paul Rademacher, who,
at the time of its invention, was working for neither Google nor Craigslist but who was
later hired by Google.

Why Are the Constituent Elements Being Combined? What’s the
Problem Being Solved?
Craigslist provides links to Google Maps and Yahoo! Maps for any individual real
estate listing, but it does not map the listings collectively. The single listing per map on
the Craigslist interface makes it a challenge to mentally track the location of all the
properties. Moreover, when looking for real estate, you often want to look at a narrowly
defined neighborhood or find houses with good access to transit. With Craigslist, you
have to click many links and manually piece together a lot of maps to focus your search
geographically.

Housingmaps.com addresses these challenge by letting you see on a Google map all
the Craigslist apartments or houses in a specific area, not just an individual item. At
Housingmaps.com, geographical location becomes the primary lens for looking for real
estate, with a map as the central element of the user interface.

Where Is the Remixing Happening?
The remixing occurs on the server side on a web site (Housingmaps.com) that is distinct
from both the source web site (Craigslist) and the destination application (Google
Maps). Data is drawn from the source and transformed into a Google map, which is
embedded in web pages at Housingmaps.com.

How Are These Elements Being Combined?
This question really breaks down into two questions:

 * How does Housingmaps.com obtain the housing and rental data from Craigslist?

 * How does Housingmaps.com create a Google map of that data?

A desirable, and increasingly common, method for mashups to obtain data from a
web site is through a web site’s publicly available application programming interface
(API). An API is designed specifically to facilitate communication between programs,
often including the exchange of data. (You will be introduced in detail to APIs in
Chapters 6 and 7.)

At this time, Craigslist does not provide a public API but does provide RSS feeds.
As I will discuss in Chapter 4, RSS feeds are used to syndicate, or transport, information
from a web site to a program that consumes this information. The RSS feeds, however,
do not provide enough detail to precisely position the listings on a map.

Consequently, Housingmaps.com screen-scrapes (or crawls) Craigslist; that is,
Housingmaps.com retrieves and parses the HTML pages of Craigslist to obtain detailed
information about each listing. The crawling is performed carefully so as to minimize

the use of bandwidth. When you access Housingmaps.com, you are accessing not real-
time data from Craigslist but rather the data that has been screen-scraped by
Housingmaps.com.

Note Public APIs and RSS feeds are generally preferable to screen-scraping web sites. Screen-
scraping, when poorly implemented, can overtax the data source. Always check that you are complying
with the terms of service of the data source in how you use the data.

To display the real estate information on a Google map, the current version of
Housingmaps.com uses the Google Maps API,3 which is the official Google-sanctioned
way of embedding Google maps in a non-Google-owned web page. (You will look in
detail at the Google Maps API in various other places, particularly in Chapter 13.)
3. http://www.google.com/apis/maps/

It’s interesting to go into a bit of history here to understand the emergence of the
mashup phenomenon. When Housingmaps.com first showed up in April 2005,
Rademacher was using Google Maps before it had any real API. He deciphered the
original JavaScript of Google Maps and figured out how to incorporate Google Maps
into Housingmaps.com. During the period between the release of Google Maps on
February 8, 2005, and the publication of version 1 of the Google Maps API (on
approximately June 29, 20054), there was a period of intense “hacking” of Google
Maps, described in the following way by members of the Google Maps team:5

For this and other reasons we were thrilled to see “hackers” have a go at
Google Maps almost immediately after we launched the site back in early
February. Literally within days, their blogs described the inner workings of
our maps more accurately than our own design documents did, and soon
the most amazing “hacks” started to appear: Philip Lindsay’s Google
Maps “stand-alone” mode, Paul Rademacher’s [Housingmaps.com], and
Chris Smoak’s Busmonster, to mention a few.

Comparable Mashups
Since the debut of Housingmaps.com, many other mashups—in fact, tens of
thousands—have followed this pattern set of recasting data to make geographical
location the organizing principle. These mashups cover an incredible range of topics and
interests.6

Many other mashups involve extracting geocoded data (location information, often
latitude and longitude) from one source to then place it on an online map (such as a
Google map or Yahoo! map). I name two prominent examples here:

 * Adrian Holovaty’s Chicago crime map (http://chicagocrime.org), which is a
database of crimes reported in Chicago fronted by a Google Map interface

 * Weather Bonk, which is a mashup of weather data on a Google map
(http://www.weatherbonk.com/weather/about.jsp)

Google Maps in Flickr
In the earlier days of Flickr (before August 2006), there was no built-in feature that
allowed a user to show pictures on a map. The Google Maps in Flickr (GMiF) script
was created to fill in that gap by letting you see a Flickr photo on a Google map. Today,
even with Flickr’s built-in map of geotagged photos, which uses Yahoo! Maps
technology, GMiF remains a valuable mashup. GMiF allows users to use a Google map,
which many prefer over Yahoo! Maps, to display their photos. Moreover, GMiF also
integrates Google Earth, a feature not currently built into Flickr. GMiF provides an
excellent case study of how you can extend an application such as Flickr to fit user
preferences.
4. http://benmetcalfe.com/blog/index.php/2005/06/29/google-make-map-api-available-finally/

 5. Google Maps Hacks by Rich Gibson and Erle Schuyler (O’Reilly Media, 2006)

 6. See http://googlemapsmania.blogspot.com/ for many new mashups based on Google Maps that
appear every day.

What Is Being Combined?
GMiF (http://webdev.yuan.cc/gmif/) brings together Flickr pictures, Google Maps, and
Google Earth within the Firefox browser via a Greasemonkey script. I’ll break this
down for you:

 * Flickr (http://flickr.com) is a popular photo-sharing site.

 * Google Maps (http://maps.google.com/) is an online mapping system.

 * Google Earth (http://earth.google.com/) is a desktop “magic-carpet” interface
that lets you pan and zoom around the globe.

 * The Firefox web browser (http://www.mozilla.com/firefox/) is an open source
web browser. Notable among its features is its extension/add-on architecture,
which allows developers to add functionality to the browser.

 * The Greasemonkey extension (http://www.greasespot.net/) is a Firefox
extension that “allows users to install scripts that make on-the-fly changes to
specific web pages. As the Greasemonkey scripts are persistent, the changes made
to the web pages are executed every time the page is opened, making them
effectively permanent for the user running the script.”7 Greasemonkey scripts
allow you—as the user of that web site and not as the author of the web site—to
make customizations, all within the web browser.

HOW TO INSTALL THE GMIF SCRIPT

To run the GMiF Greasemonkey script, you must use the Firefox web browser in conjunction with the
Greasemonkey add-on and the GMiF script.

Here’s how you install GMiF:

 1. If you do not already have Firefox installed on your computer, go to http://getfirefox.com,
hit the Download Firefox button, and follow the instructions to install it.

 2. Now you need to install the Greasemonkey add-on for Firefox, so go to the following URL:
https://addons.mozilla.org/en-US/firefox/addon/748.

 3. Click the Install Now button. Restart the browser to activate the Greasemonkey add-on.

 4. Now you need to install the GMiF Greasemonkey script, so go to the following URL:
http://webdev.yuan.cc/gmif/.

 5. Click the “Download GM user script: flickr.gmap.user.js (latest version)” link. Click Install when
you are asked whether to install the script.

Why Are the Constituent Elements Being Combined? What’s the
Problem Being Solved?
GMiF is a Greasemonkey script that allows you as a user to display a Flickr picture on a
Google map or in Google Earth at the geographic location associated with that picture.
GMiF was written to support geotagging in Flickr. Geotagging, in the context of Flickr,
is the process of associating a location with a given photo, which is typically but not
necessarily the location where the photo was taken.
7. http://en.wikipedia.org/wiki/Greasemonkey, accessed on January 1, 2007, as
http://en.wikipedia.org/w/index.php?title=Greasemonkey&oldid=97588087

Until geotagging was officially integrated into Flickr with the use of Yahoo! Maps
in August 2006,8 there was no direct way to associate geocoding (location information)
with any given picture. Rev Dan Catt catalyzed the mass-geotagging phenomenon by
suggesting that Flickr users shoehorn the latitude and longitude information into the tags
associated with a photo. Many people took up the practice. The GMiF Greasemonkey
script uses that geocoding for a photo.

Let’s take a look at how GMiF works. Consider one of my own photos, shown in
Figure 1-2 (also available at http://flickr.com/photos/raymondyee/18389540/). Notice
two things:

 * This photo has associated geotagging information (for example, geo:lat=37.8721,
geo:lon=-122.257704, and the tag geotagged).

 * Note the presence of the rightmost GMap button above the photo. This button is
the result of the GMiF script, which inserts the GMap button. In other words, if
you do not have the GMiF Greasemonkey script installed, you won’t see this
button.

Insert 858Xf0102.tif

Figure 1-2. The Flickr photo “Campanile in fog”
(http://flickr.com/photos/raymondyee/18389540/) with associated geocoding embedded
in the tags. (Reproduced with permission of Yahoo! Inc. ® 2007 by Yahoo! Inc. YAHOO!
and the YAHOO! logo are trademarks of Yahoo! Inc.)

8. http://blog.flickr.com/flickrblog/2006/08/great_shot_wher.html and
http://blog.flickr.com/flickrblog/2006/08/geotagging_one_.html

Clicking the GMap button opens a Google map embedded in the Flickr web page,
with a pin indicating the location of the picture in question (as shown in Figure 1-3).

Note the red pin indicating the location of the photo. The blue pins correlate to other
geotagged photos. The map also has a thumbnail of the photo in the upper-right corner.

Insert 858Xf0103.tif

Figure 1-3. Clicking the GMap button opens a Google map in the browser. (Reproduced
with permission of Yahoo! Inc. ® 2007 by Yahoo! Inc. YAHOO! and the YAHOO! logo are
trademarks of Yahoo! Inc.)

Clicking the pin opens a callout with a picture and options of other things to do with
the picture. Note how the latitude and longitude listed correspond to the information in
the geo:lat and geo:lon tags, respectively (as shown in Figure 1-4).

Insert 858Xf0104.tif

Figure 1-4. Clicking the red pin opens a balloon containing the photo and further
geotagging functionality offered by GMiF. (Reproduced with permission of Yahoo! Inc. ®
2007 by Yahoo! Inc. YAHOO! and the YAHOO! logo are trademarks of Yahoo! Inc.)

Among the GMiF functions is integration with Google Earth. If you hit the Fly To
button, you will be presented with a file to download. If you have Google Earth installed
and it is configured in the default fashion, downloading the file launches Google Earth,
and you will be “flown” to the location of the Flickr photo (as shown in Figure 1-5).

Insert 858Xf0105.tif

Figure 1-5. Clicking the GMiF Fly To button launches Google Earth, which then displays
the photo at the latitude and longitude associated with the photo.

How Are These Elements Being Combined?
The GMiF Greasemonkey script rewrites the HTML of the Flickr page to insert the
GMap button (this rewriting of the HTML DOM is akin to looking in the HTML source
for where the Flickr buttons are and inserting HTML code for the button). Furthermore,
JavaScript code is added to embed a Google map in the Flickr page, when you (as the
user) click the GMap button.

Integration happens in the context of Flickr web page, loaded in the user’s browser.
Note how powerful this is: you don’t have to go to another application to see the picture
on a Google map because you get to use a slightly modified version of Flickr. These
modifications do not require the intervention of Flickr itself. Hence, there is room for a
lot of customization.

Note Of course, there are potential pitfalls with GMiF. GMiF, as with all Greasemonkey scripts, can
cease to function if the HTML and JavaScript source of the underlying web page the script operates on
changes. Also, with enough Greasemonkey scripts at play, instead of having a strong communal
experience of Flickr, users have many different fragmented understandings of the interface. I think these
benefits of being able to radically customize your interaction with a web site by actually changing your own

version of the interface are worth dealing with these risks.

How is the integration of GMiF with Google Earth created? The downloaded file is
a KML file. KML is a dialect of XML, which is the closest thing we have to a lingua
franca for exchanging data. The KML file contains the latitude and longitude associated
with the picture and a URL of the picture. KML is used to exchange geographic type
data that is understood by Google Earth. In other words, GMiF takes information from
one source (the URL of the picture and the latitude and longitude of the picture
embedded in tags from Flickr) and translates that information into a form that is
understood by the destination application, namely, KML for Google Earth. Once you
translate that information, you still need to get the information to the destination; in this
case, the transport happens through the formation and downloading of the KML file.

Admittedly, GMiF is a bit “hackerish,” requiring the installation of the Firefox web
browser (which does not come by default on Windows or Mac OS X), the
Greasemonkey extension, and the GMiF script. But I bring this up here to talk about the
lengths to which people are willing to go to experiment with their tools to combine
technologies.

Comparable Mashups
Mappr (http://www.mappr.com/), “an interactive environment for exploring place based
on the photos people take,” is a mashup of Flickr and a Flash-based map.

FORMAL VS. INFORMAL APIS AND INTEGRATION MECHANISMS

I mentioned in previous sections how the proliferation of formal integration mechanisms in the form of
APIs and XML feeds, for instance, are giving rise to many more mashups and remixed possibilities. It’s
important to note that you want to depend on not only these formal mechanisms but also on informal
mechanisms. Hence in this book, I’ll teach you how to look for both formal and informal mechanisms.
The example mashups I describe here use both. I hope to convey to you how to look for those informal
hooks.

LibraryLookup Bookmarklet
Let’s say you find a book at an online bookstore (for example, Amazon), but instead of
buying the book, you want to borrow it from your local library.

Jon Udell’s LibraryLookup bookmarklet9 makes it easy to jump from the Amazon
page to the corresponding catalog entry in your local library catalog—via the simple
click of a button. To accomplish the same task without LibraryLookup, you might
instead manually re-enter your search in your local library catalog, which is a tedious
task if you have to do it for many books.

LibraryLookup is a bookmarklet, which is “a small JavaScript program that can be
stored as a URL within a bookmark in most popular web browsers or within hyperlinks
on a web page.”10 A bookmarklet does not require the Greasemonkey extension in
Firefox and works in web browsers other than Firefox. LibraryLookup is, in a manner of
speaking, a mashup of online bookstores and library catalogs.
9. http://weblog.infoworld.com/udell/stories/2002/12/11/librarylookup.html

10. http://en.wikipedia.org/wiki/Bookmarklets, accessed as http://en.wikipedia.org/w/

index.php?title=Bookmarklet&oldid=96304211

LibraryLookup is less flashy than previous examples; it’s also not server side, like
Housingmaps.com. It is client side like the GMiF script, but not in exactly the same
way. But it shows another way to create browser-based integration.

Let’s look at how LibraryLookup works from the user’s point of view. To use the
LibraryLookup bookmarklet, you need to do the following:

 1. Configure a bookmarklet for the library of your choice.

 2. Invoke that bookmarklet when you arrive on a web page for the book you want to
look up in your library.

Configuring a LibraryLookup Bookmarklet
Go to the LibraryLookup Bookmarklet Generator at the following URL:
http://weblog.infoworld.com/udell/stories/2002/12/11/librarylookupGenerator.html

Now enter the base URL and library name, and select the catalog vendor
corresponding to your library. Consider, for example, the Berkeley Public Library
(BPL). In comparing the BPL OPAC to the examples of vendor online public access
catalogs (OPACs) provided by Udell, you can determine that the BPL OPAC is an
instance of an Innovative system. When you type in the base URL for the BPL OPAC
(http://www.berkeley-public.org) and the name of the library (Berkeley Public
Library), select Innovative for the vendor (as shown in Figure 1-6), and then hit Submit,
you get a bookmarklet that you can then drag to your browser toolbar. The source of the
bookmarklet is as follows:

javascript:var%20re=/([\/-]|is[bs]n=)(\d{7,9}[\dX])/i;
if(re.test(location.href)==true){var%20isbn=RegExp.$2;
void(win=window.open('http://www.berkeley-public.org'+'/search/i='+isbn,
'LibraryLookup','scrollbars=1,resizable=1,location=1,width=575,height=500'))}

Note If your library is not one of the vendors listed by Udell, it is not difficult to take these templates and
make them work for libraries with slightly changed systems.

Insert 858Xf0106.tif

Figure 1-6. The LibraryLookup Bookmarklet Generator with parameters for the BPL

Invoking the LibraryLookup Bookmarklet
Let’s see this bookmarklet in action. Here I use the LibraryLookup bookmarklet for the
BPL, applied to the book Foundations of Ajax, which is published by Apress with an
ISBN-10 of 1590595823. If you go to the corresponding Amazon page
(http://www.amazon.com/Foundations-Ajax-Foundation-Ryan-Asleson/dp/1590595823/)

and hit the BPL LibraryLookup bookmarklet, you would see a window pop up showing
the book in the BPL (see Figure 1-7).

Insert 858Xf0107r.tif

Figure 1-7. Invoking the LibraryLookup bookmarklet to look up Foundations of Ajax at the
BPL. (Software copyright Innovative Interfaces, Inc. All rights reserved.)

How Does This Mashup Work?
The LibraryLookup bookmarklet looks for an ISBN (or ISSN) in the URL of the book-
related site to identify the book you want to find. The bookmarklet does the following:

 1. It extracts an ISBN from the URL of the library catalog.

 2. It repackages the ISBN in a new URL to look up that book in your library catalog.

How Can This Mashup Be Extended?
This bookmarklet has some limitations. If you want to query multiple libraries in your
area, you might find it tedious to create the bookmarklet for each of these libraries. One
approach is to modify the bookmarklet to send ISBNs to the OCLC Open WorldCat
catalog. Here’s the corresponding bookmarklet:

javascript:var%20re=/([\/-]|is[bs]n=)(\d{7,9}[\dX])/i;
if(re.test(location.href)==true){var%20isbn=RegExp.$2;
void(win=window.open('http://worldcatlibraries.org/wcpa'+'/isbn/'+isbn,
'LibraryLookup','scrollbars=1,resizable=1,width=575,height=500'))}

There is a deeper limitation of the LibraryLookup bookmarklet, which you can see
through the following example. If you use the BPL bookmarklet to see whether
Czesl´aw Mil´osz’s New and Collected Poems: 1931–2001 is in the library by first
looking it up at Amazon and finding a paperback version at
http://www.amazon.com/exec/obidos/ASIN/0060514485 and then invoking the
bookmarklet to arrive at http://library.berkeley-public.org/search/i=0060514485, you
might be surprised to not turn up the book in question, especially since the Nobel Prize
winning poet spent the last 40 years of his life in Berkeley. It turns out that there are
indeed copies of Mil´osz’s book in the BPL, but they are a different edition with a
different ISBN (006019667X). See the following URL:
http://library.berkeley-public.org/search/i=006019667X

Different editions of a work have different ISBNs. Furthermore, it’s not obvious
how to derive the ISBN of related editions.

In recognizing that the LibraryLookup bookmarklet, by using an ISBN to uniquely
identify a work, is not able to recognize various editions of a book, Udell has taken a
number of different approaches to overcome this limitation, all of which use the OCLC
xISBN service, a web service that returns a list of ISBNs that are associated with a
submitted ISBN:11

 * The first is a Greasemonkey script that works on an Amazon page for a book. The
script first checks whether Udell’s local library has a book with the same ISBN as
the Amazon book in question. If not, the script then queries the local library for
any of the ISBNs associated with the book, a listed generated by the xISBN
service.12

 * The second extension is a port of the Greasemonkey script (which is tied to
Firefox) to something that works in Internet Explorer.13

Udell has also worked on another type of mashup between Amazon and a local
library: a service that checks your Amazon wish list in order to receive notifications
about availability in a Keene, NH library (Udell’s local libraries).14 This service awaits
generalizations for multiple OPACs and multiple libraries.
11. http://www.worldcat.org/affiliate/webservices/xisbn/app.jsp

12. http://weblog.infoworld.com/udell/2006/01/30.html

13. http://blog.jonudell.net/2007/04/23/greasemonkeying-with-ie/

14. http://elmcity.info/services

Comparable Mashups
BookBurro, in the form of either a Firefox extension or a Greasemonkey script, displays
the price of a corresponding book as a pop-up window.15

LibraryThing is “an online service to help people catalog their books easily.”16 It is
much more than a typical mashup but has elements that are mashup-like—including the
thingISBN API17 described in the following way:

Today I’m releasing thingISBN, LibraryThing’s “answer” to xISBN. Under
the hood, xISBN is a test of FRBR, a highly developed, well-thought-out
way for librarians to model bibliographic relationships. By contrast,
thingISBN is based on LibraryThing’s “everyone a librarian” idea of
bibliographic modeling. Users “combine” works as they see fit. If they
make a mistake, other users can “separate” them. It’s a less nuanced and
more chaotic way of doing things but can yield some useful results.

William Denton has been experimenting with both xISBN and thingISBN, showing
that it might be better to use both services rather than just one.18

Tracking Other Mashups
Of course, many mashups exist other than the ones I have highlighted in this chapter.
You can always learn more by studying other examples of mashups.

In studying mashups, you will find one web site that is a particularly useful
resource: http://programmableweb.com. This site is created and managed by John
Musser.

I will be referring to Programmableweb.com throughout the book but want to
highlight some specific parts here that will help you keep up with mashups:

 * The Programmableweb.com blog is a narrative of the latest developments in the
world of mashups and APIs.19

 * The Mashup Dashboard provides an overview of the mashups in the
Programmableweb.com database, which as of August 2007, covers more than
2,220 mashups.20

Summary
In this chapter, you studied three major examples of mashups: Housingmaps.com,
Google Maps in Flickr, and the LibraryLookup bookmarklet. I chose these examples to
illustrate some commonalities and differences you will find among mashups. By posing
a number of analytic questions (What is being combined? Why are these elements being
combined? Where is the remixing or recombination happening? How are they being
combined, in terms of the interface and behind the scenes in the technical machinery?
How can the mashup be extended?), you saw a repeated pattern:

 1. Data is extracted from a source web site.

 2. This data is translated into a form meaningful to the destination web site.

 3. The repackaged data is sent to the destination site.

There are important differences among the various mashups, specifically in where
the integration happens and what is being integrated. For instance, Housingmaps.com is
a server-side application, whereas the mashing up of GMiF and LibraryLookup occurs
within the browser.

Now that you have a sense of how mashups are constructed and what they are used
for, you’ll turn now to a study of the individual services and sources of data that can be
recombined.
15. http://bookburro.org/

16. http://www.librarything.com/about.php

17. http://www.librarything.com/thingology/2006/06/introducing-thingisbn_14.php

18. http://www.frbr.org/categories/librarything/

19. http://blog.programmableweb.com/

20. http://www.programmableweb.com/mashups

	Looking for Patterns in Mashups
	Housingmaps.com
	What Is Being Combined?
	Why Are the Constituent Elements Being Combined? What’s the Problem Being Solved?
	Where Is the Remixing Happening?
	How Are These Elements Being Combined?
	Comparable Mashups

	Google Maps in Flickr
	What Is Being Combined?
	Why Are the Constituent Elements Being Combined? What’s the Problem Being Solved?
	How Are These Elements Being Combined?
	Comparable Mashups

	LibraryLookup Bookmarklet
	Configuring a LibraryLookup Bookmarklet
	Invoking the LibraryLookup Bookmarklet
	How Does This Mashup Work?
	How Can This Mashup Be Extended?
	Comparable Mashups

	Tracking Other Mashups
	Summary

